․ㅔN:

 European Council of
 Civil Engineers

Editor and
copyright owner:
Registered office:

ECCE

European Council of Civil Engineers
One Great George Street, Westminster London SW1, United Kingdom

Copyright © by ECCE 2014
All rights reserved. No part of this publication may be reproduced or transmitted in anyform or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the copyright owner ECCE.

Contributions
from the following countries

BOSNIA AND HERZEGOVINA*	Page	$048-053$
CROATIA	Page	$054-071$
CYPRUS	Page	$072-083$
CZECH REPUBLIC	Page	$084-105$
ESTONIA	Page	$106-117$
FRANCE	Page	$118-141$
GEORGIA	Page	$142-151$
GERMANY	Page	$152-167$
GREAT BRITAIN	Page	$168-179$
GREECE	Page	$180-193$
HUNGARY	Page	$194-205$
IRELAND, Republic and Northern	Page	$206-207$
ITALY	Page	$208-253$
LATVIA	Page	$254-263$
LITHUANIA	Page	$264-271$
MALTA	Page	$272-281$
MONTENEGRO	Page	$282-289$
POLAND	Page	$290-305$
PORTUGAL	Page	$306-313$
SLOVENIA	Page	$314-341$
SPAIN	Page	$342-375$
SWITZERLAND*	Page	$376-381$
TURKEY	Page	$382-383$
JAPAN**	Page	$384-405$

[^0]

Editors in single countries

1. CROATIA
2. CYPRUS
3. CZECH REPUBLIC
4. ESTONIA
5. FRANCE
6. GERMANY
7. GREAT BRITAIN
8. GEORGIA
9. GREECE
10. HUNGARY
11. IRELAND
12. ITALY
13. LATVIA
14. LITHUANIA
15. MALTA
16. MONTENEGRO
17. POLAND
18. PORTUGAL
19. SLOVENIA
20. SPAIN
21. TURKEY
22. JAPAN [as quest]

Zvonimir Sever, Aleksej Dušek
Andreas Constantinides, George Demetriou
Alois Materna, Jiří Stráskỳ
Tiia Ruben, Alar Just, IvarTalvik
Georges Pilot
Carsten Ahrens
Melissa Zanocco, Brian Duguid
uri Svanidze, Mirian Kalabegishvili, Malkhaz Bediashvili, Nodar Medzmariashvili
Aris Chatzidakis, Vassilis Economopoulos
Gabor Szöllössy
Murt Coleman
Nicola Monda, Massimo Mariani, Enzo Siviero,
Michele Culatti, Luca Guido, Fabrizia Zorzenon
Helena Endriksone
Vincentas Stragys
Ruben Paul Borg, George Cassar. Vincent Cassar
Nebojša Djuranović, Miloš Knežević
Vodzimierz Szymczak, Janusz Rymsza,
Malgorzata Skowronek
Fernando Branco, Renato Oliveira Bastos
Gorazd Humar, Viktor Markelj, Branko Zadnik
José Francisco Sáez Rubio, Jesús Gómez Hermos
Tugrul Tankut
Prof. Fumio Masubuchi, Mr. Mitsuo Iso, Ms. Kyo Tekenouchi, Mr. Mikio Matsui, Mr. Naoichi Kuroshima

ECCE President's introduction

Apedestrian bridge is the best symbol for the art of Civil Engineering. It represents the simplest and most elegant structure to pass an obstacle to reach the unknown side, or simply to go on with our lives of discovery. To build a pedestrian bridge means to face the challenge of connecting what is separated, or to eliminate the
 existing obstacle. And when it is finished, people passes and enjoys, but rarely looks at that shy engineer that, in the border of the river, looking at the bridge, says proudly "I was able to do it".
This is the life of the civil engineer, working mostly in the shadow, he is proud to eliminate most of the existing natural and living problems, making the world a better place to live
In tribute to this symbol represented by the Pedestrian Bridges, the European Council of

Editor's foreword

he book you are holding is the second book prepared by the European Council of Civil Engineers (ECCE) on the subject of cultural and technical heritage in civil engineering and architecture
This time the task of the working group under the aegis of the ECCE - known as Task Force Civil Engineering Heritage - was to undertake as comprehensive as possible a review of the achievements of human expertise in the construction of bridges specifically intended for pedestrians. This task was not chosen at random. Instead, it had a specific objective. Although footbridges are usually smaller structures (there are exceptions), their planning and execution require a great deal of expertise in the fields of both construction and architecture. Few construction projects involve such creative interaction between construction engineer and architect from the outset. Today it is almost mpossible to imagine the creation of a new pedestrian bridge without their fruitful cooperation. Such cooperation requires both of the participants in the process to hone and refine the concept of the other.
The present book is the result of the teamwork of in dividual working groups in more than 22 ECCE member states. Together, we selected more than 200 footbridges for

A cooperation agreement between ECCE and JSCE was signed by ECCE President Fernando Branco, ECCE President Elect Whodzimierz Szymczak and JSCE President Takehito Ono in Lisbon on 30 May 2013.

inclusion in this book, regardless of their date of construction or their size. The result is an interesting collection of footbridges selected by the working groups in individual ECCE member states. Few other books offer such a varied selection of fascinating pedestrian bridges in one place. The book is complemented by a review of 17 footbridges in Japan, prepared specially for this book by the Japan Society of Civil Engineers (JSCE). The Japanese contribution is the fruit of cooperation between the ECCE and the JSCE.
It is no coincidence that the cover of the book features two very different bridges that are separated by more than four centuries. The first bridge on the cover is the Rialto Bridge in Venice, perhaps the most recognisable pedestrian bridge in the world. It is particularly important for our profession because its construction (completed in 1591) was the result of a public competition to choose a design for the bridge. This competition, which lasted several decades, was one of the first of its kind in the world. This is still a highly significant fact today. The other bridge on the cover is the Bridge of Peace in Tbilisi, Georgia (built in 2010), whose name includes a word that is loaded with meaning. Even with their names, bridges can symbolically communicate messages that are increasingly important for today's civilisation.
The Footbridges - Small is Beautiful project involved more than 60 contributors in 22 countries in the preparation of the individual articles and numerous photographs. They include the members of the editorial committee, whose invaluable advice helped give this book its final shape.

I would like to express my sincere thanks to all the contributors, without singling anybody out by name, for their creative and fruitful cooperation, and for the patience required during the preparation of material for this book.

Particular thanks are due to Fernando Branco, the current ECCE President, and Wlodzimierz Szymczak, who will take over from him as ECCE President in October 2014, for their understanding and assistance in the realisation of this major book project. The same acknowledgement goes to all the members of the ECCE Executive Board and the members of the Task Force Civil Engineering Heritage 2010-2012 and 2012-2014.
Finally, thanks are due to Professor Enzo Siviero of the Università IUAV di Venezia for generously agreeing to review the introductory chapter on the history of bridge-building.

Some notes on the history of bridge structures

Written by Gorazd Humar, B.Sc.C.E., © Review: prof. Enzo Siviero, Faculty of Architecture, Venice

Claude Monet (1840-1926)
Le Pont Japonais (The Japanese Bridge)

Hradeckega Footbridge in Ljubljana, Slovenia, 1867

The article that follows does not aim to describe the entire history of construction, or more particularly of bridge-building, since it does not cover the whole of the historical period in which bridges have been built. The text is a compilation of the author's independent research and a number of his studies relating to the history of bridge-building. It also includes material that the author presents to students in his lectures on the history of construction at the University of Maribor's Faculty of Civil Engineering. The text also contains significant statements and findings from numerous researchers of the history of onstruction. The author has combined their findings into the overall context of the article . Thin on the article to his own judgent, so that the text before you can tell the story, supported by
historical facts, of the development of bridge-building expertise up to the beginning of the twentieth century

Some statements and findings are dealt with in more detail because of the interesting points they raise, and serve to make the varied history of construction even more interest ing. Why can't the history of construction, and particularly the history of bridge-building, ing. Why can't the history of construction, and particularly the history of bridge-building
be read like a thrilling novel? The many famous builders and engineers who have built bridges have supplied more than enough reasons to suggest that it can. So let us begin..

Marsh-dwellers'settlement

Venice was also built as settlement on water

The oldest bridges were almost certainly made of wood

We do not know when and where the first bridges appeared. Even so, it is not difficult to imagine what they looked like. They were almost certainly made of logs an
would have served to allow people to cross streams or smal rivers. The short lifespan of wood, however, means that none of these earliest bridges have survived.
The first wooden bridges that we know of were built by marsh-dwellers who built their dwellings on wooden pile or stilts driven into marshy ground, forming small settle
ments. Life in such settlements was safer because acce was difficult and enemies were easier to spot. The lives o the marsh-dwellers were centred round hunting, fishing and agriculture and they travelled using simple dugout canoes The first pile-dwellings of the marsh-dwellers were buil in the large wetland area south of Ljubljana, the capital o Slovenia, in the first half of the fifth millennium BC, in other words at the end of the Stone Age. People continued to live here throughout the Copper Age and right up und Bronze Age. Similar pile-dwellings have also been found in other countries: Austria, Switzerland, France, Germany and Italy.
Archaeologists have discovered the remains of a large settlement of this type in a marshy area close to the city of Ljubljana in Slovenia. Judging by the wooden piles pre served in the marshy soil, it is possible to estimate that wooden bridge around 400 metres long and supported by
piles once led to the settlement. This bridge did not only serve for access, it was part of the defences of this settle ment in the middle of the marsh. Several thousand year later the city of Venice developed using this same principl of protection against enemies by building on water, thoug of course in an entirely different manner

Stone was the basic
 construction material of

ancient civilisations
Only a few of the bridges built by ancient civilisations have survived to the present day. These stone structures are a silent testimony to the bridge-building expertise of our ancestors thousands of years ago. Stone was the mos because of its advantage over other natural materials. Stone suitable for building was always available and it could be shaped as required. Its greatest advantages, however, were its strength and durability. This is the reason why of all th bridges built by our ancestors, only stone bridges have sur vived.

The oldest stone bridges
The first stone bridges were naturally somewhat primitive. Bridging an obstacle was most often done using flat tive. Bridging an obstacle was most often done using flat stone slabs whose length did not exceed 2.5 metres. These were supported in a simple manner by other stones placed
in the bed of the stream or river to act as piers. One of the best known bridges of this kind in Europe is the simple tone "clapper bridge" called the Tarr Steps, in the Exmoor National Park in England.

It is not known exactly when this simple but effective bridge was built, but it is believed to date from around 1000 BC. The bridge is 55 metres long and has 17 spans consisting of stone slabs
A bridge made of stone slabs is also known to have been built in Sichuan province in China in around the year 040 BC. The Venetian merchant and traveller Marco Polo is writings on China
Also interesting
the Mycenaean culture techniques used to bridge gaps example is the gate at the entrance to the citadel of Mycenae in the Peloponnese, known as the Lion Gate. A huge stone lintel weighing 15 tonnes and measuring 4.5×2.0 0.8 metres was placed over the gate. The shape of this intel is interesting in that it is slightly thicker in the centre, where the lasted from 1400 BC to 1100 BC .
Stone and, later, brick also predominated in the other constructions of the ancient civilisations that developed in he warm and fertile landscapes of Mesopotamia along the Euphrates and Tigris rivers and on the river Nile. Less well known but no less developed civilisations also inhabited

The Lion Gate in Mycena

The great Ziggurat of U

Babylon

Dezful bridge
the area of the river Ganges in present-day India and the Yangtze river in China.

By far the best-known stone structures are the famous pyramids of Egypt and the Assyrian architecture of Meso potamia. The be Great Zigourat of Ur
The Egyptians were not ju
The Egyptians were not just good builders. Even today we are unable to explain how the enormous quantities of
stone used to construct the pyramids were broken and transported from the quarries of Aswan. Another interest ing fact is that the Great Pyramid of Cheops, built in around 2700 BC , is the largest stone structure ever built in the his tory of humankind. In terms of the quantity of stone used to Great Pyramid of Cheops, whose base measures 233×233 Great Pyramid of Cheops, whose base measures 233 . 2 using around 2.6 million cubic metres of stone
Yet the findings of archaeologists who have studied the civilisations of the ancient world show that the first to use arches as structural elements were the inhabitants of Meso potamia - the Babylonians and the Sumerians. The arch bridge over the Euphrates at Babylon built by Nebuchad served as an important model for the subsequent development of bridge-building. This bridge had several arches and a total length of 390 metres
Via the Phoenicians, who carried knowledge of construc tion techniques from Mesopotamia and the Nile Valley to the shores of the Mediterranean, the art of building in stone spread rapidly towards Europe. At this point we must als ty who ruled in the fourth century BC. The world's oldes surviving stone bridge dates from this period. Six hundred metres long and resting on massive piers, its load-bearing structure consisted of irregular arches. Another bridge buil by the Sassanids was the bridge at Dezful, notable for it pointed arches and a series of smaller arches that served to reduce the weight of the bridge

The art of construction in stone advanced significantly in ancient Greece. The Greeks gave stone new forms and came before them, they worked the stone with iron tools. It is in ancient Greece that we find the first traces of rational-
 ity in construction and the origin of a variety of architectural styles of increasing richness. The Greeks succeeded in bringing the working of stone to a level that was practically faultless. Another characteristic of ancient Greek civilisation was that stone was not only used in the construction familiar to us all, such as theatres, hippodromes, stadiums, baths, and so on.

In Roman times the arch
structural element Some sources claim that the arch was first developed as
a structural element by the Etruscans, who lived in the Apa structural element by the Etruscans, who lived in the Apmillennium BC. The origins of ancient Roman building and engineering, which gradually began to develop in the third century BC, may be considered a continuation of Etruscan construction techniques. The Romans, whose empire began to spread across the whole Mediterranean region, made by earlier civilisations.
The arch, the most characteristic Roman structural element, quickly established itself in structures of every kind. The Romans began to use it in all the large and important structures of their empire, including aqueducts with multiple tiers, roads, bridges, amphitheatres, arenas, triumphal arches, and so on
Thanks to the durability of stone and the impressive solidity achieved by the Romans, a very large number of Itructures from this period have survived to the present day.
Is also thanks to the Romans, who brought the stone arch to a higher stage of evolution than any civilisation before them, that the use of the arch as the principal structural element spread throughout the Mediterranean and the greater part of Europe
The Romans were also familiar with a form of concrete, ne as Roman concrete (concretum), which was mainly used as a filler in stone structures
From the writings of Vitruvius (Marcus Vitruvius Pollio, a classical Roman author who lived at the time of Julius Caesar and the Emperor Augustus in the first century BC), we know that the Romans made concrete from a mixture of lime, volcanic ash from Baiae (a resort town across the Bay of Naples from Mount Vesuvius), pieces of stone and rushed brick. The lime and ash, which is a type of volcanic Among the most famous structures made from Roman concrete is the aqueduct that ran from the hilly Eifel region in crete is the aqueduct that ran from the hilly Eifer region in AD 70 and AD 90 , this ovoid-section aqueduct carried water for 77 kilometres, for the most part underground.
Tests of Roman concrete conducted by the Swiss scienist Adolf Voellmy found that it had a breaking strength of $10 \mathrm{~kg} / \mathrm{cm}^{2}$
Roman concrete was also used in the construction of the mous Trajan's Bridge over the Danube in Serbia. With the fall of the Western Roman Empire towards the forgotten. More than a millennium would pass before engineers once again discovered a binder that could harden underwater.

The Pons Cestius (Ponte Cestio) in Rom

Vulci bridge in Toscany, Italy The Romans often used light materials as filler in orde to reduce the weight of structures. This technique was used above all in the case of bridges and aqueducts. The most commonly used filler was volcanic tuff quarried below Ve suvius. Among the famous structures to use this material tably of all, the Pantheon in Rome -oday we know that while the
struction of arches and bridges to a remark sophistication, they did not master the mathematical meth ods needed to calculate loads. In most cases they built the arches on the basis of experience and empirical models.

The stone arch is developed to perfection in ancient Rome

It is no surprise that a large number of bridges built by the ancient Romans have survived 2,000 years to the pre sent day. More than 300 bridges from Roman times are still standing today in various parts of Europe. What is the
cret of their long life and their remarkable durability?
The ancient Romans, who learnt the skill of buildi arches from the Etruscans, developed the arch - the loadbearing structure of every stone bridge - to the point of per fection, despite the fact that they did not have the enginee ing knowledge we possess today.
The development of the bridge form, in particular the increase in the spans of bridge arches, took place according to entirely empirical methods. The Romans accumulated great deal of experience in this field, since they coushout their empire, which extended across half of Europe. Bridges from the days of ancient Rome are remarkable for two of the basic characteristics of their construc tion. The first notable characteristic of Roman bridges is the form of the arch. This represented a line in the form of a perfect semicircle. Very few bridges had arches that devi ated from this semicircular line. The second characteristic is more enigmatic, yet it was this that enabled the majority
of bridges built by the ancient Romans to survive for an extraordinarily long time. The stone blocks used to build the arches were put in place without the use of mortar in the gaps between them. In geometrical terms, the blocks were cut with such accuracy that each block fitted closely to its neighbour. This, of course, required tools of sufficiently good quality with which to work the stone. For this reason the quarrying of stone was a highly developed activity in risina near Trieste in Italy dates back around 2,000 year and is still operating today
The largest number of bridges built in ancient Roman times and still standing today are to be found in the city of Rome itself. All of them once served to carry importan
Roman roads across the river Tiber. Perhaps the most char-

The Pons Milviu (Ponte Milvio) in Rome
acteristic example of the Roman method of bridge-building is the Pons Milvius (Ponte Milvio), built in 109 BC as part of the Via Flaminia. The majority of large bridges from that time are named after the emperors who ordered their construction. The best-known Roman bridge outside present-
day Italy is the Alcantara Bridge over the river Tagus in Spain. This bridge boasts the largest arch (with a span of 30 metres) of any surviving bridge from ancient Roman times. Sadly the bridge with the largest arch built by the Romans has not survived. This was the bridge at Narni in Umbria, he largest arch of which had a span of 34.75 metres.
The bridge over the Nera at Narni - at the point where the Via Flaminia turns towards Ancona - was built by the four large arches, the larger two of which had spans of 20.5 metres and 34.75 metres respectively, while the smaller two oth had spans of 15.75 metres. An interesting technical detail is that the piers of the largest arch were at two different heights. It is not known exactly when the bridge fell down, but poor foundations were the reason for its collapse. The Pons Fabricius (Ponte Fabricio) in Rome commissioned by Lucius Fabricius in 62 BC. The bridge survives of the River Tiber the bridge has had to be restored several imes. In the second century AD the frontal walls, which were originally of travertine, were bricked over. Because of the nearby Jewish ghetto the bridge was also known in the Middle Ages as the Pons Judaeorum.
The Pons Cestius was the second bridge to link the little land in the middle of the Tiber with the river's right bank. It was built in 46 BC . It has partly fallen down and been he original bridge. The bridge was completely restored in 1892.

The Pons Fabricius (Ponte Fabricio) in Rome
\qquad 892.

Traian's Column in Rome, Italy
The inhabitants of Rome call the remains of this bridge the Ponte Rotto (Broken Bridge). When it was built (be tween 181 and 179 BC) it was called the Pons Aurelius It is the oldest Roman stone bridge. It was reconstructed was destroyed by the high waters of the Tiber, and only one of the arches has survived, hence the bridge's current name The Ponte S. Angelo is probably the most beautiful bridg in Rome. The Emperor Hadrian had it built in 133/134 AD The Pons Aelius, as it was known at the time, led to Had rian's mausoleum on the left bank of the Tiber. Only th three central arches have remained of the original struc ture. The bridge was completely renovated in the Ages. During the period of the Roman Baroque Lorenz Bernini had the idea of placing ten statues of angels with symbols of the Passion on the bridgeTrajan's Column is unique and one
monuments of Ancient Rome in the City of Rome. Th column, which is 39.87 metres tall including its base, made of 25 blocks of marble 3.5 metres in diameter. The outer surface of the column is covered from top to bottom in reliefs showing scenes from the war with barbarian Da
cia (the eastern part of the Roman Empire) in 101-103 AD and 107-108 AD. The various images from this war (waged by the Emperor Trajan (who ruled from 98 AD to 107 AD wind round the column right up to the top. Approximately 2500 human figures are depicted on the column. One scene shows Trajan's Bridge over the Danube at Kladovo, built by Apollodorus of Damascus. The bridge had stone foundations and piers, while the main span was made of wood. I A spiral staircase leads to the top, where a statue of St Pete has stood since 158
All the bridges built in ancient Roman times that have not survived to the present day fell victim either to floods or to erosion of their foundations.
The Romans also built numerous aqueducts, following similar principles to those used in the construction of bridg es. We need only mention here two of the most characteris
tic surviving Roman aqueducts. The most imposing Roma tic surviving Roman aqueducts. The most imposing Roman city of Segovia. Hardly less imposing is the Pont du Gard, an aqueduct bridge in the Provence region of France. The complexity and difficulty of these feats of engineering give us pause for thought even today.
The fall of the Roman Empire towards the end of the fifth century AD also represented the end of the construction of large bridges throughout Europe for a very long time

Roman wooden bridges
The Romans did not only build stone bridges, howver, since this was not always possible. As a rule, they ficient quantity of high-quality stone in the vicinity to cut into stone blocks. The Romans built bridges across almost he whole of present-day Europe. These bridges allowed the Roman legionaries to cross rivers quickly, and this is why they were so important. They became part of the defences of the Roman Empire, which survived intact until the end he fourth century AD.
It is understandable that wooden bridges from ancient Roman times have not survived to the present day. In many of the wooden piles driven into the riverbed in places where bridges once stood.
One of the best-known wooden bridges from ancient Roman times was the Caesar's Bridge over the Rhine in present-day Germany. This was a massive wooden bridge built of thick logs and beams, joined together by wooden for the bridge built for the Walt Disney Pictures film The Chronicles of Narnia: Prince Caspian on the river Soča in Slovenia in 2007
Another even better known famous Roman bridge was of course the famous Traian's Bridge over the Danube on he border between Serbia and Romania. This was built by Apollodorus of Damascus, one of the greatest bridge engineers ever to have lived. The bridge is named atter the Ema remarkable achievement not only in terms of its, construcion but also because of its size. It was 1,135 metres long and its central section had 18 spans measuring 51 metres. An interesting technique was used for the foundations of this bridge: rubble was poured into the Danube to serve as a this bridge: rubble was poured into the Danube to serve as a mense piers, which stood 52 metres apart, was bridged by
he arched wooden superstructure supporting the roadway.
Owing to the short lifespan of the wooden structure, the Owing to the short lifespan of the wooden structure, the
bridge has understandably not survived to the present day. All that is left today are some remnants of the stone piers.

The bridge form undergoes many changes in the early Middle Ages and Renaissance

Rouen Cathedral, France
Supporting structure
The first changes in bridge-building and, above all, the construction of large buildings and churches, came with the Gothic period, in the first century of the second millennium. This style is perhaps best known in the case of religiou architecture, when churches slowly began to change from the predominant Romanesque style to the new Gothic style Church buildings became taller and their naves grew wid er. Gothic architecture developed an exceptionally beau-
tiful, elegant and refined style that is still admired today We need only think of the famous cathedral of Reims, or of Notre-Dame in Paris, construction of which began 1163 and was only completed two centuries later
Changes also took place in bridge-building, above all in the shape of the arches, which became increasingly flattened and began to achieve greater and greater spans A notable bridge from the early part of this period is the This bridge was characterised not only by its oreat lenoth hut also by was characterised not only by its great lenge markable for the period. The biggest arch had a span of 34.8 metres. This in itself represented a major change in comparison to the bridges with semicircular arches built in ancient Roman times. Bridges were becoming increasingly slender and elegant. A large section of the Avignon bridg was pulled down in 1385 by order of Pope Boniface IX - fo reasons of defence. The well-preserved remaing Ponte Scaligero in Vero als
io. Built between 1354 and 1356. At that time it had the longest span in the world (48.70 m)
Other important advances in bridge construction were made in the fourteenth century, in the early Renaissance period. This period, which drew inspiration from the rich heritage of the art of bridge-building in Roman times, is characterised by the construction of a number of interest
ing bridges. The Devil's Bridge or Old Bridge (Pont Vieux)
 at Céret in the French Pyrenees, built between 1321 and 1339, had a single arch with a span of 45.45 metres. Just few years later, in 1356, it was overtaken by an arch bridge in Verona, Italy, which had a span of 48.20 metres. Again just a few years later, in 1377, a stone arch bridge was built over the river Adda near Trezzo in Italy with a span measuring a full 72 metres, an incredible achievement fo
that time. Although it was demolished just 40 years late that time. Abridge held the record for the largest span right up un til 1903 (!) when the Adolphe Bridge, with an opening of 84.65 metres, was built in Luxembourg.

rezzo sull'Adda Bridge (Italy)

The bridge over the river Adda at Trezzo was built between 370 in 1377 by order of Bernabò Visconti, the Lord of Milan. A fortified bridge, it provided access to the castle by the own. On 21 December 1416, barely four decades after it was built, the bridge was destroyed by the condottiero Carisconti, during a siege.
The bridge at Trezzo was notable for its very low span-to-rise atio (3.4 to 1), giving the arch a very flat profile, and for the fact that the arch was built of a single course of stone blocks. The remains of the initial section of the arch still survive today.

The bridges of the Middle Ages already differed significantly from Roman structures in the way that stone was used as the basic construction material. Bridges were becoming increasingly rational and slender. The faster development of science during the Renaissance (with notable advances in fields such as mathematics, statics, mechanics of solids, geometry, etc.) also contributed to the development of bridge-building and the construction of other arched or aulted structures such as domes.
Foremost among the giants of human intellect who conributed to the development of engineering and construc-
ion - and therefore bridge-building - was Leonardo da Vinci (1452-1519), who studied the problem of the pressure of the arch on abutments.
Leonardo da Vinci was a genius: a multifaceted inventor and artist, he also turned his attention to a great number of engineering problems, in particular with regard to the onstruction of military fortifications. Other ideas included designs for navigation canals and systems of dams and
sluices.
Leonardo also researched the principles of construc-
no flarge ar a sketched design for a large arch bridge with a span of 240 metres across the Golden Horn in Istanbul, which he drew between 1502 and 1503. The plans are said to have

Trezzo sull'Adda Bridge, painting from 1898

Leonardo da Vinci (1452-1519)

in Florence - its shape represents a decisive change in the form of the arch structure

Particularly interesting among Renaissance bridges is Particularly interesting among Renaissance bridges is
the Ponte Santa Trinita in Florence. This bridge feature very flat arches and an additionally curved form of transi tion from arch to piers. The form of the arches is strongly emphasised by archivolts (projecting edges at the front of the arch).

The bridge was commissioned by Cosimo de' Medici, the ruler of Florence, and built by the distinguished architec Bartolomeo Ammannati. It was completed in 1569 . The
arches of the bridge had a line that had never been used arches of the bridge had a line that had never been used
before and in fact this bridge represented an entirely new understanding of the line of the arch, which was no longer
been commissioned by Suleiman the Magnificent, the Ot toman sultan. Although the project was never realised, the study for the Golden Horn bridge may be understood as synthesis of Leonardo's great knowledge and engineering expertise.
es with mechano drew up plans for pontoon bridges, bridg two-storey b Galileo Galilei (1564-1642) is considered the father of the science of the resistance of materials. The first person to use static calculations to solve the problem of arches was however, the French mathematician Philippe de La Hir (1640-1718), who was the first to use a funicular polygon to determine forces in arches.

The Višegrad bridge over the Drina river. Built by Mimar Sinan in 1577.

This is the first known example in the history of bridgebuilding of the construction of a bridge with apertures to reduce weight in the interior of the bridge. From this point of view the Old Bridge in Mostar represents a particularly interesting chapter in the history of civil engineering. It was
built in the last year of the reign of Suleiman the Magnificent. Entirely different but no less interesting is the bridge over the Drina at Višegrad (Bosnia and Herzegovina). This bridge was built in 1577, just a few years after the bridge in Mostar, and some authors claim that it was built by the architect Mimar Sinan. Construction in the channel of th Drina was a complex process that lasted six years, but the result was probably the largest bridge ever built in the Ot ousness of form, especially in the arch openings, which rhythmically increase in size from the two banks towards the centre of the bridge
The bridge, including access ramps, has a total length of 328 metres, while the openings have spans ranging from 10.7 metres to 14.79 metres. The bridge became widely known thanks to the novel The Bridge on the Drina by

The Rialto Bridge in Venice

The wooden Rialto Bridge before
it was destroyed by fire

Andrea Palladio's design for the Rialto Bridge

The Rialto Bridge in Venice, which was completed in 1591, is probably one of the most famous and most visited footbridges in the world. Its construction was a process that to replace the earlier wooden bridge, which had been de stroyed by fire appeared in 1503. The search for an accept able solution for the new bridge was renewed in 1550. In a move of great significance for the history of construction, a public competition was held to find an architectural solution. The committee responsible for the competition was presided over by the salt merchants' guild, who held special privileges regarding the sale of salt on the bridge. The com-
petition to select the most suitable new solution for a bridge over the Grand Canal is one of the earliest public architec tural competitions in history. The competition criteria spec ified that shops should be placed on the bridge (as before) and that the bridge opening should be sufficiently large to allow the Doge's barge to pass through it unobstructed. An other important condition for the designers of the bridge was that it should be made of stone, to ensure that it did not share the fate of its wooden predecessor. Entries were
submitted by several of the most prominent architects of the period - which was also known as Venice's Golden Age. Shortly after this, as a result of the discovery of Americ and the rerouting of maritime traffic across the Atlantic Venice slowly began to stagnate

Among the most famous architects to submit a solu tion was the renowned Andrea Palladio. Yet while his pro-
osed solutions in the classical style were architecturally wonderful, they contained one significant defect. Palladio planned a bridge with several arches, a solution that would have considerably impeded Grand Canal.
The situation was interrupted decisively by the Venetian enate, which on 7 January 1588 ruled that Venice's main uitable proposal was that submitted by Antonio da Ponte. His design was for a stone arch bridge with a span of 28.8 metres. This was not a particularly large span for the time. Many bridges in Europe already had considerably larger pans (e.g. the Ponte Scaligero in Verona, built
argest arch of which a span of 48.70 metres)
Rialto Bridge was built on very poor foundations from the geological point of view. The constantly waterlogged soil of Venice was unable to offer sufficient support to withstand he enormous horizontal forces generated by stone arch bridges. Antonio da Ponte skilfully solved this problem by placing the foundations of the bridge on a very wide area determined by a great

ally into the ground.

The Rialto Bridge has another distinguishing characteristic. It has three separate walkways for pedestrians: a larg-
er one in the centre and two narrower ones on either side of the bridge. Between the walkways are two rows of little shops, which give the bridge its characteristic appearance. The Rialto Bridge is 22.1 metres wide and is probably till the widest footbridge in the world today. For some cen-

The Bridge of Sighs in Venice

Other bridges in Venice
Venice is justifiably known as the city of bridges. An enormous number of large and small bridges connect the streets and alleys of this city built in a ragoon. Ne grea
majority of the 431 bridges in Venice today date from the golden age of the Most Serene Republic of Venice - "La Se renissima". The number of new bridges built in Venice ove the last two centuries can be counted on the fingers of on hand. Practically all the bridges of Venice are arch bridges In most cases the arches are of white Istrian stone, while the superstructure is either brick or stone. The bridges of Ven-
ice are particularly identifiable by their unique parapets, ice are particularly identifiable by their unique parapei
which in the great majority of cases are of stone. These give the bridges their characteristic "Venetian" shape
Undoubtedly the best known and most photographed bridge in Venice after the picturesque Rialto Bridge is the small but highly decorative Bridge of Sighs (Ponte de Sospiri). It connects the Doge's Palace with Venice's once notorious New Prison. This is not a normal bridge with foundations on the seabed or abutments on the banks of a canal or river. It rests on the walls of the two neighbourFrom this point of view it is not even a true bridge but rather a bridge-like passageway between two buildings.
According to legend, the bridge gained its name because of the deep sighs of the prisoners who crossed it on their way from the Doge's Palace to the prison on the other side. Before they descended into their dark prison cells below the ground, hey wheir last glimpse of Venice. Legend also has it that the famous adventurer Giacomo Casanova was among those to cross the Bridge of Sighs on his way to prison - before famously escaping.
Today such aerial passageways are also known as sky walks. It might not be unreasonable to assert that the Bridge of Sighs was the first passageway of this kind in the world. Bridges of the same name can be found at the universitie. built later and differ in style. Venice's many bridges
known small bridge in an out-of a somewhat less well goes by the rather racy name of Ponte delle Tette (literally Bridge of Tits). The bridge was given this name for a rea son. Believed to have been built in the fifteenth century, it stands not far from the Rialto Bridge, in an area that wa officially designated a red-light district. According to one tutes would stand at the windows of a house by the bridge and display their breasts to attract business. According to another story, which may well also be true, the authoritie tacitly encouraged women to bare their breasts in the house by the bridge in an attempt to stem the rising tide of homo sexuality, viewed as a social problem in the Venice of th
ifteenth and sixteenth centuries. The aim was therefore to convert men to heterosexuality. Whatever the truth of the natter, it is certainly an original name for a bridge.
The Ponte delle Tette is not the only bridge in Venice Bridge of Sighs. There is also the Ponte della Paglia (Bridge f Straw) near the Doos's Palace. This is where straw was uloaded for the pallets of the prisoners in the nearby cells. Then there is the Ponte dei Pugni (Bridge of Fists), on which youths from various districts of the city would display heir fighting skills.
We could certainly find many other bridges with curious names too, since every bridge in Venice has its own history and its own story. Unsurprisingly, the bridges of Venice have Twain, Lord Byron, the Croatian writer Predrag Matvejević, and many others. It would seem that the myths surrounding ome of Venice's famous bridges have developed out of the interesting stories that have been spun about them.

SEST IER DE S. POLO

PONTE
DE LE TETTE
The Bridge of Tits today It was
renovated and widened in 1847
The Bridge of Straw
(Ponte della Paglia) in Venice

The foundations of modern structural mechanics are laid in the 17 th and 18 th centuries

As mentioned earlier, the construction of the Santa Trin ita bridge in Florence in 1569 represented a true turning point in the understanding of structural mechanics and consequently, the line of the arch. The new line of the flat tened arch establishes an entirely new understanding of the interplay of gravitational and other forces in the bridge structure. The arch has long since ceased to be the semi circular form used in ancient Rome. It has become increas
ingly flattened, but the most important thing is that the lin of the arch of the Santa Trinita bridge is very close to catenary, in other words a curve that increases its curvature as it moves from the centre of the arch towards the abut ments. In this way the horizontal forces in the centre of th arch are increasingly transformed into vertical forces in the
pier or abutment.
The research by Ammannati, the builder of the Santa Trinita bridge, into the interplay of forces in a catenary was successtuly continued by one of the fathers of modenl
mechanics, Galileo Galilei (1564-1642), who was not only famous as an astronomer. As well as establishing the law of falling bodies, Galileo attempted to determine the path of projectiles. He established that the path of a horizontally thrown object is a perfect parabola. In 1638 he succeeded in proving that a parabolic trajectory corresponds to a catenary. Essentially, the interplay of forces in an arch bridge structure of catenary shape is cimilar to that in a falling projectile.
Also dating from this period is the first known proposal to build a bridge suspended on chains. This was the work of the Croatian inventor and engineer Faustus Verantius (also known as Faust Vrančićc or Fausto Veranzio). His work Machinae Novae, published in 1595, contained his idea for a bridge suspended from chains. This was the firs predecessor of a system for the construction of suspension
bridges that was widely used in later centuries and is still used today.

Plans for suspension bridges by the Croatian inventor Faustus Verantius (Faust Vrančić), 1595

Of enormous importance for the further understanding of structural mechanics was the research conducted in the seventeenth century by Robert Hooke (1635-1703). He iscovered the law of elasticity - known as ich is still valid today.
The most solid foundations of modern structural mechanHe presented his research in his 1687 work Philosophiæ Naturalis Principia Mathematica, condensing it into the laws that we know today as Newton's laws. Newton's discoveries opened the way to further development of the science f construction.
A crucial turning point in the history of bridge-building came when Jean-Rodolphe Perronet (1708-1794) established the Ecole des Ponts et Chaussees (School of Bridges
and Roads) in France in 1747. This school provided the and Roads) in France in 1747. This school provided the gineering principles of statics, strength of materials, mechanics and other parallel sciences that contributed, in a scientific manner, to the introduction of new construction principles in bridge-building that were supported by calcuations. Perronet's contribution to the further development findings of his school, he entirely changed the shape of the arch as the principal load-bearing element of the bridge. arch as the principal oad-bearing element of the bridge.
He flattened the arch to a remarkable degree and in doing o did away with all previous conceptions of arch design in bridge structures

Robert Hooke
(1635-1703)

Jean R. Perron (1708-1794)

Comparison of progress in bridgebuilding from the Roman era to the 18th modernised the form of the arch and changed the role of bridge piers. In the picture are the Pont de la Concorde, designed by Perronet, and the Pons Milvius in Rome. Around 1800 years separate the building of these
two bridges. While semicircular arche and thick piers were typical of Roman bridges, Perronet's stone bridges had very shallow arches and slender piers, which among other things allowed more water to pass under the bridge

The problem of the dome of St Peter's in Rome and the loeginning of modern civil engineering

Michelangelo Buonarro (1475-1564)

Leaving aside Perronet's school, it could be argued that the real beginnings of a serious scientific, engineeringbased approach to construction using complex mathemation cal and physical principles can be noted in the approach the problem of cracks in the dome of St Peter's Basilica in
Rome. The procedures introduced in the search for a way to repair the dome in 1742 may be considered the beginning of modern civil engineering, and in particular of structur statics in the sense in which we still understand it today Following the death of the chief architect of St Peter's 1546, the task of building the great dome of what was then the biggest church in the world fell to Michelangelo Buonarroti (1475-1564). After extensively revising the origina plans, Michelangelo built a wooden model of the dome tha still survives today. The dome was eventually completed using Michelangelo's unfinished plans, by his successors, The dome of St Peter's is constructed in two layers o shells. Within the two shells are spiral stairs leading to the top of the dome. The dome has a diameter of 42.59 metres,
The dome of St Peter's in Rom top of the dome. The dome has a diameter of 42
while its apex is 101 metres above the ground.

The first cracks in the dome were observed in as early as 1686. Pope Innocent XI therefore commissioned two architects to assess the state of the dome. Their work lasted In late 1740 Pope Benedict XIV successful solutions. e of three mathematicians to address the problem of the cracks in the dome, which were causing considerable conern in the Vatican. The members of the committee were R. Boskovich (1703-1770), F. Jacquier (1711-1788) and T. Le Seur (1703-1770). The approach adopted by the three mathematicians was a revolutionary one for the time. Instead of resorting to the established rules of construction, hey addressed the problem from the point of view of the
 basis of these findings, looked for ways to repair the dome. They used diagrams to determine the interplay of forces in he dome and arrived at a model that explained why the cracks had formed. Even so, their theory and the findings based on it provoked great opposition from a large number of experts.
Modern
Modern theoretical construction science has since fully vindicated their findings. Because they addressed the roblem of the dome in a theoretical and scientific manner, foundations of modern civil engineering. Naturally, their findings also found an immediate and direct response in bridge-building, where mathematical principles were in-bridge-building, where mathematical principles were in-
creasingly being applied. As a result, bridges were become increasingly slender, and their spans were gradually beginning to increase in size. As already mentioned, the most building was the French engineer Jean-Rodolphe Perronet.

A brief historical overview
of the development of
iron bridges

James Watt (1736-1819)

The cast-iron bridge in Ironbridge, England, built in 1779 and still bridge in the world. Span 30 metres

The Wearmouth Bridge in England, 1796

Everyone familiar with the history of bridge-building Everyone fas irst iron (or rather cast-iron) bridge was built in 1779 near Coalbrookdale in the English county of Shropshire. This cast-iron arch bridge with a span of 30 metres over the river Severn represented a new development in bridge-building at a time when practically all bridges were still built of stone, brick or wood. It opened a new era of iron and, later, steel bridges which seemed to offer pracwas both product and harbinger of the imminent Industria Revolution, which brought with it many important technical achievements, particularly in late-eighteenth-century and early-nineteenth-century England. Among them were the invention of the steam engine (James Watt, 1736-1819) and the building of the first steam locomotive, followed, in 1825, by the opening of the first steam railway, between Stockton-on-Tees and Darlington. The cheapness and com-
petitiveness of cast iron in comparison to other construction materials led to an unprecedented boom in iron structures including bridges, in the early nineteenth century, first in England and then throughout Europe. We should, howeve be aware that cast iron was a construction material with certain limitations. It has good compressive strength but is much less able to withstand tensile and bending stresses It is also characterised by relatively low elasticity, in othe al for bridge structures, which is the reason why the ogreat majority of cast-iron bridges were arch bridges, in which compressive stresses predominate. Bridge-builders took advantage of the special characteristics of cast iron to build what were, for the time, bold bridge structures with large spans and arches with very small heights or rises.
The Wearmouth Bridge, built across the river Wear in Sunderland, England in 1796, was one of the boldest cast
iron bridge structures ever built. With a span of 71.9 me tres, it was at that time the biggest single-span bridge in the world (apart from the stone bridge at Trezzo in Italy buil

in 1377, which had a span of 72 metres and was demolshed in 1416), yet it was only three-quarters the weight of the bridge over the Severn at Ironbridge. In 1854 Robert Stephenson strengthened the bridge with three additional an of 114 metre stands in the same positionOne of the largest and in the same position. first era of cast-iron bridges stands in Dublin, Ireland, and is still in use as a pedestrian bridge today. Built in 1810, this single arch bridge over the river Liffey has a total length of 42 metres. It was cast in Coalbrookdale, in England, in the same foundry as the Iron Bridge over the Severn. The majority of cast-iron bridges of the period were cast in this was transported there in pieces by ship.
The largest arch bridge ever to be built of cast iron was built in London in 1819. This was the Southwark Bridge over the Thames, with three arches, the largest of which had a span of 73 metres. Today a bridge of the same name but with a somewhat different structure stands in the same position.
The use of cast iron in bridge-building quickly spread from England across the whole of Europe and became particularly popular in Germany. In 1791 a scaled-down reppark at Wörlitz. The first large cast-iron bridge suitable for heavy cart traffic to be built in continental Europe was the bridge at Laasan in Silesia (today Łażany, Poland), built beween 1794 and 1796. Unfortunately this bridge was blown up by the retreating German army in 1945. In 1802 a fine arch bridge was built in the park at Charlottenburg near

The cast-iron Liffey Bridge (or Ha'penn Bridge) over the river Liffey in Dublin, built in 1810)

Cast-iron bridge at Laasan, today Łażany in Poland, 1796

The Pont des Arts in Paris
the first cast-iron bridge in France, 1804

The Hradecky Bridge in Ljubljana Slovenia. Cast-iron tubular arch bridge, 1867.
over the Severn. Nevertheless, this interesting structure be came a model for the majority of later cast-iron bridges. A number of cast-iron bridges were also built in France. The nine-arch Pont des Arts was built over the Seine in Par
between 1802 nerations of cast-iron bridges were made
solid casts rather than from hollow or tubular casts as were used in later generations of cast-iron bridges, among them the Hradecky Bridge in Ljubljana, Slovenia.
In the first half of the nineteenth century and beyond, cast iron was widely used in structures of all kinds, par ticularly railways and pedestrian bridges, because of it low cost. Cast-iron structures began to be used in numer-
ous bridges, where however the poor mechanical properties of cast iron, particularly its brittleness and poor tensile strength, soon came to the fore. This led to numerous rail way accidents and bridge collapses. The first major disaste (known as the Dee Bridge Disaster) occurred in 1847 on th river Dee in England, when the bridge structure fractured at the joints. One of the most famous and tragic bridge col lapses occurred in 1879, when the railway bridge over the Firth of tay in Scotland collapsed as a train was passing
over it during a violent storm (the Tay Bridge Disaster). The train plunged into the water, claiming the lives of its 75 passengers. It was this event, which saw fracture failure in the cast-iron sections of the structure, that sealed the fate of cast-iron bridges. Following the Norwood Junctio railway accident in 1891, their construction was effectivel prohibited.

And yet it was not only accidents and disasters that put an end to the use of cast iron in the building of bridges. Tech nological development and new inventions in the mid-nine iron was increasingly used in structures instead of cast iron. A little later rolled iron also began to be used. Both materials had incomparably better characteristics than cast iron for building bridges. Rolled iron, in particular, had a more homogeneous load-bearing capacity and had good tensil strength as well as compressive strength, which was a bi advantage in comparison to cast iron.
production of iron with his invention, in 1856, of the Besse mer converter, which opened the way to the manufacture of high-quality steel. The use of steel in the second half of the nineteenth century and beyond represented a true revolution in all kinds of construction, including shipbuilding. Nevertheless, the widespread use of cast iron in the construction of arch bridges (in particular) right up until the spite its numerous disadvantages the use of cast iron was dictated by its low price.
Henry Bessemer (1813-1898)

The development of hinges in bridge structures

Let us begin this section by considering the role or funcion of hinges in a bridge structure. In structural statics heory, a hinge is a structural element which does not transmit a bending moment (the bending moment in the hinge is therefore expressed as $\mathrm{M}=0$), but which can transmit axial forces, i.e. compressive, tensile and shear forces. The use of "moment hinges" contributes to the statical determinacy a structure. It is particularly useful in bridge structure with high temperature stresses and those in which partial inge allows partial and limited rotation and movement of individual parts of the bridge structure without affecting the bridge's load-bearing capacity. This most frequently occurs as a result of temperature changes or changes in the loading of the bridge.
When was a hinge first used in a bridge structure as a tructural element? One of the first to consider the theoretiis Navier (1785-1836). An French engineer Claude-Loutanding the role of hinges was taken with the construction of the Pont d'Arcole in Paris in 1854. This bridge, which tands near Notre-Dame cathedral and spans one arm of the Seine, was built by the retired engineer Alphonse Oudry 1819-1869) and his partner Nicolas Cadiat. The bridge was built from a combination of rolled iron and wrought ron, rather than cast iron, and had a span of 80 metres. The markable boldness of the structure. Although the arch did not contain a hinge at the crown of the arch the arch was extremely slender at this point and therefore flexible. The height of the arch at the crown was just 38 centimetres. This design allowed the two halves of the bridge to withstand the slight rotations and movements that mainly occurred as the result of temperature changes. Thanks to its slenderness or flexibility, this part of the bridge structure could be said to perform the role of a hinge. At the same time the Pont d'Arcole was the first bridge to span the Seine without the
use of intermediate piers. The builders of the Pont d'Arcole may, however, have gone too far with the slenderness of their arch, since on 16 February 1888 the bridge suddenly sagged by 20 centimetres. Additional strengthening of the agged by 20 centimetres. Additional strengthening of the
bridge was carried out immediately, before more serious damage could occur.
The technical solution adopted by Oudry was an attempt reduce the effect of temperature changes on the internal ics the bridge may be defined as an elastic arch that is fixed at both ends and has, at its centre, a kind of hinge that allows moderate rotations and in this way relieves the static oads on the bridge structure as a whole.

Claude-Louis Navier
(1785-1836)

The Pont d'Arcole in Paris, built in 1854. The bridge structure has since
been somewhat altered and modernised.

J. A. Charles Bresse (1822-1883)

The hinge of a large steel bridge
 Quebec steel bridge, 1919
best
theo

The invention of hinges and their use in iron bridge structures

With its bold slenderness and original structural concept, the Pont d'Arcole led directly to the introduction and use of the first hinge in the next generation of iron bridges A further important theoretical step that contributed to the introduction of hinges in bridge structures (particularl A. Charles Bresse (1822-1883). He tested his theory by means of measurements on existing bridges in France and obtained results of considerable consistency. This was th best proof of the practical applicability and validity of his theory.

The first bridge-builders to put the theory of hinges in bridge structures into practice were the French engineers Couche and Salle. In 1858 they built a wrought-iron railway bridge to carry the Paris-Creil line over the Saint-Deni tice truss structure and, below it, an iron arch on which the truss structure rested. The arch, which had a span of 45.16 metres and a rise of 4.71 metres, was built as a two-hinged arch, with the hinges naturally located in the abutments. Originally the engineers wanted to build a three-hinged arch, but owing to the insufficient height of the arch struc ture at the crown they had to abandon this idea. Neverthe-
less, the bridge caused a sensation in engineering circles less, the bridge caused a sensation in engineering circle
with its statically pure and technically accomplished struc ture. Above all, Bresse's theory of the elasticity of iron arch es was now confirmed in practice

Shortly after this, between 1862 and 1864, a large iron bridge was built near Koblenz in Germany. This was the first bridge in the world to consist of a truss or lattice arch structure resting on supports via hinges. The German engineer Heinrich Gerber (1832-1912) became renowned fo his use of hinges in bridge structures (to begin with these
were mainly iron bridges). In 1864 he successfully patent ed a technical solution for the road bridge over the Main at Hassfurt, which was completed in 1867 and which used hinges in the truss structure. This was the first prototype of a structure that is still known today as a Gerber beam. The bridge over the Main was also the first modern steel bridge since until that time iron bridges had mainly been made of cast, wrought or rolled iron. The length of Gerber's two ished and thus has not survived to the present day
The door was now open for the generalised use of hinges in the construction of bridges (particularly iron bridges) Soon after this hinges also began to be used in the construc tion of solid bridges, whether of stone or, later, of concrete

Application of the hinge
to the Hradecky Bridge in
Liulliana [1867]
Just a few years after Couche and Salle built the first hinged bridge, the Austrian engineer Johann Hermann successfully used this technical solution in the construction of he Hradecky Bridge. He knew why a hinge was necessary and he also knew where to put it - in the centre (i.e. at the rown) of the arch of his new footbridge in the centre of Ljubljana (Slovenia). He was clearly well aware of the role and function of the hinge in his planned new cast-iron structure. bridges in Europe and indeed the world to incorporate what was, for the time, a revolutionary structural element. At the ime of its construction (1867) it was also the only cast-iron tubular arch bridge to incorporate a hinge.

These facts make the Hradecky Bridge unique in the world. From this point of view it may be considered an early presentative - if not indeed the oldest representative -o pertise in bridge-building

Iron bridges break the record for length of span in the 19 th century

In the second half of the nineteenth century iron and teel broke the records previously held by other construcion materials used to build bridges. This period saw the construction of famous bridges such as the Garabit Viaduct G. Eiffel, 1884) and, most notably, the Forth Rail Bridge over the Firth of Forth in Scotland (1889). The latter had

Firth of Forth railway bridge in Scotland, 1889

Crystal Palace in London, 1851
two main spans of 521 metres - an astonishing achievemen for the time. Iron and steel made rapid and triumphant progress in bridge-building. Steel was increasingly used in the construction industry, particularly after 1856, when Henry Bessemer devised a process for producing high-quality
steel, and now became the material of choice for the consteel, and now became the material of choice for he ear-
struction of large structures. In the late nineteenth and ear ly twentieth centuries, numerous public buildings - railway stations, museums, exhibition halls, etc. - were built using a combination of steel and glass.
One of the most famous buildings to characterise the
developmental possibilities and poent developmental possibilities and potentials of the Industrial Revolution is without a doubt the Crystal Palace, built in ground plan of which measured an incredible 615×150 metres, was built in just 17 weeks and was almost entirely constructed of iron, steel and glass. It was built to house the Great Exhibition of 1851, the first international exhibition of the products of industry. With its magnificent ex terior and endless expanses of glass on an iron skeleton, the Crystal Palace heralded a new technological era in con struction and represented a complete break with traditiona world, it expressed the great potential of iron and steel a materials in every field of construction. Iron continued it triumphal march in the construction of large bridges for the rapidly developing railway network in Europe.
Shortly after the Great Exhibition, the Crystal Palace was dismantled and moved from its original location in Hyde Park to a new location in London. It stood here until 1936 when it was destroyed by fire, after which the few survivin sections were demolished.
The Pont Alexandre III in Paris, 1900

It is perhaps less generally well known that a similar fate was originally planned for the Eiffel Tower, which was built for the 1889 Exposition Universelle in Paris. The original plan was to dismantle the tower once the exhibition was Tower still stands in Paris today as the city's most recognisable landmark and one of most important attractions. Steel bridges can also be beautiful, as is demonstrated by a highly ornate bridge located in the very centre of Paris. The Pont Alexandre III was built in 1900 as a symbol of Franco-Russian friendship in the year of the Exposition Universelle in Paris. It is named after Tsar Alexander III, whose son Nicholas II laid the bridge's foundation stone.
The numerous figurative and decorative elements of the bridge were created by the greatest French artists of the day and skilfully incorporated into the bridge, a low steel arch structure of bold design with a span of 100 metres. Many people consider it the most beautiful bridge in Paris.

Concrete began its victorious advance at the end of the 19th century

Concrete is today an almost ubiquitous construction maerial. It is practically impossible to imagine any modern structure without it and we encounter it at every step. Its main advantages are that it can be prepared simply and uickly, it is relatively inexpensive and it has an adequate
The history of the
The history of the use of concrete is actually very interesting. As mentioned earlier, the first to use it were the an-
cient Romans, who called it concretum. The dome of the Pantheon in Rome, built in around 126 BC, is still the largest unreinforced concrete dome in the world.
This hemispherical dome has a diameter of 43.40 metres. It is built from extremely light concrete containing volcanic tuff, chosen because of its lightness. The Roman concrete the dome is still standing and its magnificent structure remains an inspiration to modern construction science.
In 1756 the British engineer John Smeaton (1724-1792) pioneered the use of a hydraulic binder, in other words a mortar which will also set underwater. This marked the start of a new era in the history of civil engineering. The first hydraulic mortars, baked at a high temperature, were made of lime. With the invention of Portland cement in 1844 Charles Johnson, 1811-1911), this type of cement gradually began to be used in bridge-building. Up until the middle of the nineteenth century all bridges had been built using ime mortar. Now, however, this material gradually began to disappear from bridge-building. After 1890 cement was used exclusively as a binder.

Decoration on the Pont Alexandre III

Interior view of the Pantheon dome in Rome, 126 BC
 Isaac Charles Johnson (1811-1911), the inventor of Portland cement

The use of concrete meant the gradual end to thousands of years of stone bridge construction in Europe

With a main span of 85 metres, he bridge at Solkan (Slovenia) boas the largest stone arch of any railway arch of any railway
bridge in the world.

The use of cement as a basic binding material immedi ately found its place in bridge-building. The aqueduct buil over the river Yonne in France in 1870 had several concrete arches, the largest of which had an opening of 40 metres. Yet although their march had now become inexorable, concrete bridges were still in their infancy. Bridge-builder still preferred the tried and tested method of building stone struction material to the limits of its possibilities.
Steel bridges also began to provide competition to stone bridges, although these were not widely used in Austria and Italy in the late nineteenth and early twentieth centuries. In view of the widespread opposition to the construction of steel bridges on railway lines, the railway companies in Austria and Italy gave priority to solid stone arch bridges
As a result, this period also produced some As a result, this period also produced some of the larges
and most beautiful stone railway bridges. The crowning achievement of a path of development followed by thousands upon thousands of stone bridges built over the course of two millennia came in 1906 with the construction of the largest stone arch in the world.
That year saw the construction of the last great stone bridge: the railway bridge over the river Soča at Solkan in Slovenia. This bridge, whose stone arch has a span of 85 metres, stil graces andey
he Ponte del Risorgimento in Rome span of 100 metres Built in 1911.

ook place between 1904 and 1906 and the demanding project concentrated all the bridge-building expertise accumulated by the engineering profession in the construction of stone bridges. The bridge till boasts the largest stone arch of any bridge in the world
In the last two decades numerous stone road bridges with even longer spans have been built in China, although these are not bridges in the true sense of the word but simply viaducts across a valThe largest stone viaduct in China is the Danhe Bridge, which has a main span of 146 metres. It is, however, a representative of a different technological era from that of the great stone bridges of the late nineteenth and early twentieth centuries.
The construction of the railway bridge over the Soča at Solkan also marks the end of the long era of stone bridges. The predominance of concrete as a cheaper material that is also more suitable for bridge-building put an end to a venerable tradition, lasting several thousand years, of unique and oday unrepeatable structures.
The first concrete bridge with a span of 100 metres was built in Rome between 1910 and 1911 This was the Ponte del Risorgimento over the Tiber, built using a system patented by the Belgian concrete in bridge-building.
Large stone bridges had become monuments overnight. A new era of reinforced concrete and, later prestressed concrete now began, and still continues today. How we view this era today may best be summed up as follows: we may build concrete bridges, but our hearts are still loyal to the imperish able beauty of stone bridges.
The further development of bridge-building in the twentieth and twenty-first centuries and up to the present day is another story. The best way to interpret it is the review of numerous bridges, parknowledge is still evolving and will certainly continue to do so in the future.

iterature and sources

1. Bednarski M. Cezary: The "Chained" Bridge, Footbridge, 2011
2. ECCEE - European Council of Civil Engineers: Civil Engineering Heritage in Europe 18th - 21st Century, Grafika Soča d.o.o., Nova Gorica, ECCE, 2009
3. Graf Bernhard: Brïcken, die Welt verbinden, Prestel, München, 2002
4. Humar Gorazd: Kamniti velikan na Soči (The Stone Giant on the Soča) Založba Branko, Nova Gorica, 1996
5. Humar Gorazd: Zmajski most (The Dragon Bridge), Založnistuo Pontis in Založba Branko, Nova Gorica, 1998

World Famous Bridges in Slowenia, Arch '01, Presses des Ponts Paris 2001
8. Humar Gorazd: Hradeckega most v Ljubljani (The Hradeckega Bridge in Ljubljana), Gradbeni vestnik, letnik 62, Ljubljana, 2013
Kurrer, K. E. Kahlow, A.: Arch and vaults from 1800-1864, 1998
o. David J. Brown: Brïcken, Callwey Verlag, München, 1994

1. Mariani Massimo: Consolidamento delle strutture lignee con l'acciaio, DEI srl, Tipografia del Genio Civile, Roma, 2004
2. Melan Joseph: Der Brïckenbau, II. Band, Franz Deuticke, Leipzig und Wien, 1920
3. Pauser Alfred: Entwicklungsgeschichte des Massivbrïckenbaues, Österreichischer Betonverein, Wien, 1986
4. Prade Marcel: Les Ponts - Monumentes Historique, Editions BRISSAUD - Poitiers, 1986
5. Pržulj Milenko: Mostovi, Udruženje, "Izgradnja", Beograd, 2014
6. Séjourné Paul: Grandes voûtes, Tome I-VI, Imprimerie Vue, Tardy-Pigelet et fils, Bourges, 1914
7. Siviero Enzo: Ponteggiando, il prato casa editrice, Padova, 2009
8. Straub Hans, V. Haläsz Robert: Zur Geschichte des Bauingenieurwesens, Die Bautechnik, Berlin, 1960
9. Tonković Kruno: Masivni mostovi, Gradenje, Školska knjiga, Zagreb, 1979
10. ZölIAV: Zeitschrift des Ö̀sterreichischen Ingenieur und Architekten-Vereines, H-2, Wien, 1868

St John Nepomucene - Svaty
Jan Nepomucký
Protector against floods and also protector of bridges

Statues, monuments and inscriptions are not a very com mon phenomenon on bridges in general. Only a few bridge can boast this type of decoration, which can give a bridge a special importance. The ancient Romans used to build stone tablets into their bridges, usually to commemorate the ruler responsible for its construction. By virtue of thei function, bridges were structures on which rulers and oth could cross the bridge without observing the symbol on it. Erecting statues or commemorative symbols on bridge reached the height of its popularity in The Middle Ages. Perhaps the richest and most beautiful bridge from this point of view is the Charles Bridge in Prague, built over the Vltava in the early 15th century. Today over 30 statues and sculptures stand on the 516-metre-long bridge, transform ing it into a true art gallery.
The old Roman bridge (built 133-134 AD by the Emper or Hadrian) leading to the Castel Sant'Angelo in Rome was completely renovated during the Roman baroque period, by

Lorenzo Bernini, who placed on the bridge ten statues of angels with symbols of Christ's Passion.

A feature of both these famous bridges is that their statues are life-sized. Even in the Middle Ages the designers o bridges knew that such proportions create proper symmetry
in the traveller crossing the bridge and do not destroy the harmonic balance with the bridge structure itself.
Of all the monuments on bridges in Europe the most common are statues of St John Nepomucene (Jan Nepomucky in Czech language).
In order to explain why the image of this saint is almost always found on bridges, we need to go far back in time to the 14th century. John Nepomucene was born around 133 According to legend, he recovered from a serious illness in his youth thanks to the prayers of his pious parents. To show their gratitude for his recovery they sent him to Prague to enter God's service. There he became a famous preacher and many of those who heard him changed their way of life as a result. King Wenceslas IV invited him to his court where he became the queen's confidant. As the result of a dispute with the king, who wished to subject the Boheking's disfavour. His position was worsened by the fact that he refused to betray to the king what the queen had told him in the confessional. The king had him imprisoned and

tortured. On 20 March 1393 he had him tied in a bag and pushed from the Charles Bridge into the icy waters of the Vltava, where he drowned. According to popular rumour, as he bag was sinking to the bottom of the Vltava a halo with five stars, which symbolised the martyr, rose to the surface.
After his tragic death the martyr John Nepomucene beame a model for the proction of the sanctity of the sacament of confession. His fame spread greatly during the Catholic Reformation and in 1729 he was proclaimed a saint. Because of the manner of his death he was popularly held to be a protector against floods, while his infinite and unyielding commitment to the secrecy of the confessional also gave him the role of protector against slanderous tongues.
For these reasons statues of St John Nepomucene mainly appear on bridges, with the result that indirectly he has also become the patron saint of bridges. In 1683 a bronze statue of the saint was placed on the Charles Bridge in Prague, at the point where he was thrown into the water. Later, statues of the greatest Czech saint appeared on bridges all over Europe.

Detail from the bronze plaque on the Charles Bridge showing the moment when St John of Nepomuk was thrown from the bridge

Contributions from European countries

A beautiful bridge
is a symphony

Johan Wolfgang von Goethe
(1749-1832)

The Latin Eridge
[Latinska ćuprija)
■ Sarajevo, over the river
Miljacka

- 1565, renovated in 2004
- Famous as the site of the assassination of Archduke Franz Ferdinand in 1914

Text by: Gorazd Humar
Text by: Gorazd Humar
All photos: Gorazd Humar

The Latin Bridge is a wonderful, harmoniously designed bridge in the classical style that stands in he centre of Sarajevo. Centuries earlier, a wooden bridge stood on this site. The first stone bridge was built in 1565 by Ali Ajni-Beg, an influential citizen of Sarajevo. The bridge was given the outlines of its present form during reconstruction work carried out between 1798 and 1799. Some years earlier it had been almost entirely destroyed by floodwaters. The bridge is characterised by two relieving openings or city of Sarajevo. of the bridge. This district was known as Latinluk - the Latin quarter. The bridge is most famous, however, for an event that took place just beside it and that changed the course of world history.
It was here that on 28 June 1914 Gavrilo Princip assassinated Archduke Franz Ferdinand, the heir It was here that on 28 June 1914 Gavrilo Princip assassinated Archduke Franz Ferdinand, the heir
to the Austro-Hungarian throne, and his wife Sophie. This was the spark that triggered the conflict between Austria-Hungary and Serbia and led to the outbreak of the First World War. A museum com memorating this event still stands by the bridge today.
From 1918 until 1992 the Latin Bridge bore the name of the assassin Gavrilo Princip and was known as the Princip Bridge
The present appearance of the Latin Bridge dates from the reconstruction that took place betwee 2003 and 2004.

Bosnia and Herzegovina

The Old Eridge

- Mostar
-1557-1566
Stone arch bridge, span 28.7
metres
- Built by Mimar Hayruddin, a pupil of the famous \square ttoman architect
Mimar Sinan Mrar - Hollow interior structure, first of its kind
Destroyed in 1993, rebuilt in 2004

Text by: Gorazd Humar
All photos: Gorazd Humar
The architecture of Mostar, with the Old Bridge at its heart, is among the most beautiful and charac eristic in the whole of Bosnia and Herzegovina. The Ottoman architecture that dominates the city also includes the Cejvan Cehaj Mosque, Mostar's other architectural jewel. Mostar's old town centre developed on the two banks of the river Neretva, which are linked by the Old Bridge.
The challenge of bridging the wild river undoubtedly inspired the master architect Mimar Hayruddin, The sought a solution that would enable him to span the Neretva with a single arch and without a central pier in the river itself. The result was an extraordinary stone arch structure, built by special order of the Turkish sultan Suleiman the Magnificent (1492-1566)
Construction of the bridge is believed to have begun in 1557 and was completed in 1566, the last year of Suleiman's reign. We do not know what means were used to support the bridge during construction of the stone arch, but the torrential nature of the Neretva rules out the possibility of a supporting structure standing in the riverbed. We are, however, able to identify the quarry near Mostar which supplied the hand-cut stone that was used to build the arch. The bridge was mentioned several times by the seven-eenth-century traveller Evliya Çelebi, in words full of emotion and enthusiasm: "It is like a rainbow soaring up to the skies, extending from one cliff to the other." Later on he adds: "I, a poor and miserabl lave of Allah, have passed through sixteen countries, but never have I seen such a high bridge."
The Austrian writer Robert Michel, who dedicated a special monograph to the Old Bridge, compared world, we would probably choose the Old Bridge in Mostar." He compared the structure to petrified crescent moon or a gigantic gull turned to stone in mid-flight.
The curve of the supporting arch differs from the humpbacked arch typical of Ottoman architecture like that of the famous bridge over the Drina at Višegrad, while it is also different from the semicircula hape used by the Romans. Its form is closest to an ellipse or oval - quite an unusual shape for the ime. Hayruddin also achieved something else with the basic dimensions of the arch. The thickness of he arch in the centre, where the structure is thinnest, was a full 77 centimetres. The upper edge of the supporting arch has a projecting edge - the archivolt - that emphasises the line of the arch through the ping, is particularly interesting. The bridge's biggest secret was discovered by chance almost 400 years after it was built. While drill ing into the bridge structure during restoration work in 1955, engineers discovered two hidden cavities
in the interior of the arch. The purpose of these two parallel box-like cavities, divided by a supporting in the interior of the arch. The purpose of these two paralle obox-like cavities, divided by a supporting
wall and covered by stone slabs, was to reduce the weight of the bridge structure above the supporting
rch. The discovery of these cavities increased the historical value of the bridge. This structural solution gave the bridge a special value from the static point of view, to go with its unique shape. This "other alue of the bridge may be less well known, but from the point of view of the historical development of bridges it is worthy of particular consideration. Without a doubt this is the oldest known example of a hollow bridge in the history of bridge-building.
Mostar's Old Bridge experienced the most difficult moments in its history during the terrible war that ies. The Old Bridge did not survive the war. The equivalent of an enormous number of human casual during the fighting. On 9 November 1993, following two days of artillery bombardment and 92 direct hits, the bridge gave way and went crashing into the Neretva. The memory of one of the greatest archiectural feats in human history was washed away by the river.
In 2003, under the aegis of the World Bank and with the help of donations from numerous European countries and Turkey, work began to rebuild the bridge in its original form. The new Old Bridge was ofAt the same time it has become an involuntary monument to human foolishness and the senselessness of the war in Bosnia and Herzegovina

Croatia

For more than eleven centuries, until the beginning of the nineteenth century, the city of Dubrovnik Latin: Ragusa) was a republic, defending its survival and freedom primarily through diplomacy but also by building city walls and other fortifications. The Dubrovnik city walls run uninterruptedly for ,940 metres and represent a unique example of fortification architecture. Today they are an internaionally recognised monument. The process of constructing the walls and fortifications continued for enturies. In the fourteenth cencry the people of Dubrovik dug a moat in front of the Pile Gate, on the Entrance to the Old Town is through the Pile Gate on the west side, via a tw
a wooden drawbridge. This stone bridge underwent numerous changes and transformations over the course of the centuries. The original bridge built by military engineer Giovanni da Siena between 1397

and 1398. This was a stone bridge with a single arch. In the mid-fifteenth century the town ramparts were expanded, a new Outer Pile Gate was built and the moat was widened, all of which demanded he construction of a new three-arch stone bridge. This bridge was built in 1474 to the plans of the Dubrovnik master builder Paskoje Milicević, using stone from the island of Korcula. The decorative stone lements were made by Marko Andrijić, a stonemason from Korčula. In the year 1533, the origina wooden drawbridge. The work was completed in 1538, thereby giving the bridge its present form.
At the time of the republic and up until the mid-nineteenth century (by which time Dubrovni was under Austrian rule), the wooden bridges at the Pile and Ploče gates were drawn up at night. The mechanisms for lifting the wooden bridges are still visible today. During reconstruction work in 193 he original gates underwent restoration and the existing concrete bridge was replaced by a wooden on which can no longer be drawn. Following construction of Put iza Grada, the "Way behind the Town between 1896 and 1899, and excavations beneath the Minčeta Tower, the moat under the Outer Pile ith a paved road and a stone staircase which was carved in 1923 by the renowned Croatian sculpto Ivan Meštrović.
Inner Ploče Gate it was decided in 1449 to construct a single
Ind In order to bridge the moat as the Inner Ploče Gate Bridge) corresponding in style to the bridge in front of the Outer Pile Gate. This bridge was designed by Paskoje Miličević and built by the stonema ons Đuro Utišenović, Radoje Grubačević, Radoslav Radovanović and Vlado Bogojević
Further on, one passes along the walls of the Revelin Fortress to the Outer Ploče, constructed in 466.

In 1479 another moat was dug to the east of this gate and the Outer Ploče Gate Bridge was built ove it, once again to a design by Dubrovnik's master builder Paskoje Miličević. A wooden drawbridge and The brich stone bridge continue on to the Outer Ploce Gate oil motif on the bridges' parapets.

Croatia

Footbridge over Jazine Bay

■ Zadar

- 1962

Links the ald and new parts of Zadar

Steel bridge, totallength 152.2 metres

The first bridge across the harbour in Zadar opened in 1928. It was 153 metres long and 7 metres wide, had a roadway and footways, and opened in the middle to facilitate the passage of ships into Jazine Bay. It was destroyed in 1944 during an Allied air raid.
On 21 December 1949 a temporary pontoon bridge on stel drus On 21 December 1949 a temporary pontoon bridge on steel oil drums was anchored at the same location. Crossing the bridge during strong
could also open up to let ships through.
Finally, on 12 May 1962, the present steel bridge was opened for use: 152.2 metres long and 6 me Finally, on 12 May 1962, the present steel bridge was opened for use: 152.2 metres long and 6 me-
res wide, it connects the newer districts of town with the peninsula. It is the busiest pedestrian crossing in Zadar, designed for pedestrian traffic only. At its centre, the bridge has a structure that is designed to open in order to let ships through. Its mechanism, however, was only functional on the day of the fina inspection. Jazine Bay has been cut off from the port of Zadar ever since.

Croatia

The pedestrian suspension bridge over the river Drava in Osijek was built in 1980 and almost as soon as it was completed it joined the co-cathedral as one of Osijek's most famous and beautifu landmarks. The 209.5 metre bridge is a single-span suspended structure. Load-bearing steel cables $\emptyset 60 \mathrm{~mm}$) are stretched across two steel pylons 30.2 metres high and anchored into reinforced concrete nchorages on either side of the bridge at an axis-to-axis distance of 56.4 metres from the pylon axis concrete piles with a diameter of $1,500 \mathrm{~mm}$ and a length of approximately 22.0 metres. The precast concrete piles with a diameter of $1,500 \mathrm{~mm}$ and a ength of approximately 22.0 metres. The precast
reinforced concrete deck, with a total width of 8.0 metres, is suspended on staying cables ($\emptyset 20 \mathrm{~mm}$) attached to the main load-bearing steel cables. The total width of the pedestrian footway is 5.0 metres.

Croatia

Skradinski Buk Footbridge

- Skradin
- 1985

■ Situated inthe Kina Nationa Park in central Dalmatia - Built at the foot of the largest travertine waterfall in Europe
-The second-oldest hydroelectric Skradinski Buk waterfall

The Krka National Park is located in central Dalmatia, downstream of Miljevci and just a few mile north-east of Sibenik. It covers the area along the river Krka, which rises at the foot of Mount Dinara near Knin and flows through a 75 -kilometre gorge. It covers an area of 142 square kilometres, including 5.6 square kilometres of water surface. The Krka has seven travertine waterfalls and owes its beaut o its many natural karst phenomena.
Skradinal Buk is was created in 1985 and is famous for its large number of lakes and waterascades forming more than largest travertine waterfall in Europe. It consists of a series of travertine
The width of the cascades ranges from 200 to 400 metres, the total height difference is 45.7 metre and the waterfall covers a total length of approximately 800 metres.
A footbridge has been built across the foot of the waterfall. It is 100 metres long and 1.8 metres wide nd is built of wood in order to fit into its surroundings.
Below the Skradinski Buk waterfall is the world's second-oldest hydroelectric power station - th oldest plant of its kind in Europe. Completed in 1885, it was opened just three days after the world's oldest hydroelectric power station at Niagara Falls.

Croatia

Vršić footbridge over the
gorge of the Pazinčica

-Pazin

- 1993

Main
-Prestressed superstructure
with a box cross-section

Pazin Cave is the most picturesque example of natural forces at work on the karst terrain of the Istrian peninsula. Beneath the walls of the thousand-year-old Pazin Castle, right on the border between grey" and "red" Istria, the river Pazinčica - the largest sinking stream in Istria - disappears under ground and does not re-emerge until it reaches the valley of the river Raša.
ground and does not re-emerge untiit reaches the valley of the river Rasa.
The Vrsic bridge was built as a pedestrian bridge over the gorge of the Pazinčica. It was constructed in 1993.
The total length of the bridge is 115.5 metres, while the bridge superstructure has a length of 87.5 metres. The total width of the bridge is 8.1 metres.
The bridge is a prestressed superstructure with a box cross-section measuring 2.15×5 metres at the ends and 2.15×3 metres in the middle.
As well as connecting Pazin's pedestrian traffic with the Pazinka factory, the bridge serves to carry a main sewer pipe over the gorge.

Croatia

Footbridge over the Sava
 Martinska Ves
 -2002
 Main span 145 metres
 Suspension bridge

 netres stands in the village of Martinska es, a small urban centre on both sides of the river Sava neaSisak. As the bridge is about 4 metres wide, it can accommodate one-way motor vehicle traffic, but thi raffic will be restricted to smaller vehicles only
The bridge links the two halves of the village, whose residents previously had to use ferries to reach he shop, school, clinic and church. The bridge is a reinforced concrete cable-stayed structure with two -shaped pylons of a height of a little over 20 metres. The main cables pass over the pylons and are anchored into separate reinforced concrete blocks situated on the river banks.

Croatia

The Memorial Footbridge is located in the very centre of the city of Rijeka, on the canal separat ng the old town centre from the former port. Besides serving as a pedestrian crossing over the canal, his footbridge is also a monument to the Croatian fighters who fell during the Croatian War of Independence. It is a place of memory and of social encounters. The Memorial Bridge is designed as an extremely thin slab spanning the canal and has a distinctive L-shape. Definition of the public space memorial structure

Croatia

Footbridge over the river Vuka
 ■ukovar
 ■ 2013
 Known as the Friendship Bridge
 - Steel arched trussed structure

The footbridge over the river Vuka in Vukovar (known as the Friendship Bridge) was built in 2013 as an extension of Vukina Ulica, a street running perpendicular to the river, with the aim of providing a pedestrian link between Vukovar and the village of Olajnica on the opposite bank of the river. It is a teel truss arch bridge with a span of 31.2 metres and a total length of 46.94 metres. The total width of he superstructure is 4.4 metres, of which 3.0 metres is footway. The substructure consists of two rein forced concrete abutments, each with foundations on four drilled piles with a diameter of 0.8 metres.
The reinforced concrete deck is supported by the bottom edge of the main girders, which in structural The reinforced concrete deck is supported by the bottom edge of the main girders, which in structural of 3.8 metres in the abutment axes and 3.0 metres in the bridge axis. The height of the arches in the bridge axis is 3.5 metres.

Croatia

Footbridges in the Plitvice
Lakes National Park
$\mathbf{\square P l i t v i c e ~}$
From 1949
$\mathbf{\square N E S C O}$ World Heritage Site
from 1979
Series of 16 lakes
SMiles of small wooden
footbridges crossing the
National Park

National Park

The Plitvice Lakes were declared a national park in 1949 and constitute the largest and oldest naional park in Croatia. With its vast forests, the natural beauty of its lakes and waterfalls and its rich flora and fauna, the Plitvice Lakes National Park became, in 1979, one of the first natural sites in the world to be added to the UNESCO World Heritage List.
The wealth and splendour of the water is probably the first thing most people think of when they first come into contact with the Plitvice waterfalls. A series of 16 lakes are fed by the many small rivers and features of the Park are the travertine barriers that have formed over the course of tens of thousands of years.
The most attractive part of the national park consists of an eight-kilometre stretch of lakes and waterfalls, linked by tourist trails. The largest waterfall is 72 metres high. An intricate network of small wooden bridges and paths keeps visitors in close contact with the lakes and waterfalls.
Nestled between the trees and the water, the narrow footpaths and bridges foster friendly encounter between those who come to enjoy the untouched natural beauty. Indeed, it looks as though none of the between those who come to enjoy the untouched natural beauty. Indeed, it looks as t.

Cyprus

Paphos Castle Footbridge
\square Kato Paphos
\square 13th century
\square Access bridge to the castle
Rebuilt in the 16th century

-Rebuilt in the 16th century

The bridge has three small semicircular arches and spans the moat, giving access to the castle. The bridge was built in the Ottoman period and is believed to have been rebuilt for the existing castle in the late sixteenth century,

Elia Footbridge

\square Near the village of Fini
-17th century

- The smallest of the three
medieval Venetian bridges in
Cyprus
- Rebuilt in the 16th century

A pointed arch bridge with an opening of 5.5 metres and a width of 2.5 metres. The bridge was built using irregular blocks of stone and river pebbles. The arch is faced with squared limestone blocks. A clay plaque with an engraved cross is affixed to one side of the bridge. The bridge deck is paved with cobblestones from the river
The Elia (Olive Tree) Bridge is one of the three medieval Venetian bridges in Cyprus, the other two being the Tzelefos Bridge and the Roudia Bridge. It is the smallest of the three bridges.

Cyprus

Tzelefos Bridge

Paphos Forest, near the village Of Agios Nikolaos

Built between 1489 and 1571
Archspan 10.7 metres

- Built while Cyprus was under

Venetian rule

The bridge has an arch opening of 107 etres. The width of the pavement is approximately 2.5 metres
The bridge is made of irregular stone blocks and faced with bricks. The original pavement of cobblestones from the river still survives. The Tzelefos Bridge stands on the river Diaizos, near the village of Agios Nikolaos in Paphos Forest in Cyprus. It is an ancient
bridge built during the period of Venetian rule in Cyprus (1489-1571) to allow camel trains o transport copper and other materials from he Troodos Mountains to the port of Paphos for export.

Cyprus

The bridge consists of a semicircular arch with an opening of 8.5 metres. The bridge is built of
roughly cut limestone blocks. Squared limestone blocks were used for the arch facings.
The deck is 2.75 metres wide and still preserves the original pavement made of cobblestones from he river
stone slab on the outside of the arch is engraved with a cross and the year 1618
The Scarfou Bridge is located close to the village of Simou in the Paphos district of Cyprus. The bridge was built by the Venetians in 1618 and stands next to an old watermill, once used by the local inhabitants to mill wheat.

Tris Elies Footbridge

- Tris Elies village

■ 17th century
Built during the period of
Venetian rul

- Engraving with a cross on the
bridge
Photo: Ansastasia Kour

The bridge was built using irregular blocks
of stone and river pebbles. The arch is faced of stone and river pebbles. The
with squared limestone blocks.
An inscribed stone slab with an engraved cross dates the bridge from the seventeenth century.
The Tris Elies Footbridge was built in the period of Venetian rule.

Cyprus

This wooden bridge passes over the ancient port of Amathus, which is now under the sea
The bridge is made of iroko wood and connected to the supporting structure by means of galvanised metal flanges.
The bridge is 650 metres long and 2 metres wide
The footbridge is located in the Amathounta area of Limassol and forms part of a two-metre-wide
walkway along the Limassol seafront which extends for 4.5 kilometres
The bridge was built between 1996 and 1997.

Cyprus

Cyta Footbridge

- Nicosia
- 2003
- Metal tube - main supporting
element
- Access ramps for disabled users
and those with reduced mobility

The bridge structure consists of a curved metal tube supported by concrete columns. The bridge is 1.5 metres wide, spans a distance of 37 metres and has an opening of 70 metres.

Access to people with disabilities or reduced mobility is provided by a 12 metre ramp at the south end of the bridge and a 17 metre ramp at the north end. The Cyta Footbridge is located on Limassol Avenue, in Dasoupolis, Nicosia and connects the Archbishop Makarios III High School with the police road safety park.

Cyprus

Agios Athanasios Footbridge

- Limassol
- 2007
- Fitted with an antiseismic shock and tuned mas dampers
- Cable-stayed bridge with a single span of 50 metres

The Agios Athanasios Footbridge is a cable-stayed bridge with a clear span of approximately 50 metres. Pylons of a height of approximately 12 metres support the cables over the centreline of the bridge deck. The cables are fixed to the pylons and spread to the sides of the deck in a fan-shaped pattern. The ailings are set at a slope, in line with the cables.
The bridge deck consists of three parallel steel pipes of a diameter of 300 millimetres, which are linked to a grid of 3,000 steel blades of an aerodynamic wing-shaped design. The plane grid is stiffened by diagonal tube trusses.
The bridge support on th made of fibreglass. south end contains elastomeric bearings providing a longitudinal degree of freedom.
A shock absorber device is placed in the centre position in order to control the risk of seismic action. Tuned mass dampers are also installed below the deck to increase the damping of the bridge.

Cyprus

Pedieos River Footbridge

Nicosia

-2010-2012
Built of wood, steel and concrete
Deck covered with highly durable
African timber

The transverse bridge is 65 metres long and connects the two banks of the river Pedieos. The two sides of the bridge are also connected to ramps measuring 85 metres and 45 metres respectively.
A second 350 -metre bridge runs along the river and passes underneath the transverse bridge
The average width of the bridges is 3 metres.
The materials used for the construction of the bridges are wood, steel and concrete. The bridge decks re made of hard durable timber (from Equatorial Africa)
The deck is supported by steel members which carry the load onto the piers. These are made of steel at the top and reinforced concrete at the bottom.
The handrail is made of galvanised iron wire and stainless steel
The footbridge is part of the Pedieos flood plain pedestrian/bicycle path linking the municipalities of Strovolos and Lakatamia and covering a distance of 2.5 kilometres. It was designed by the Cyprus Town Planning and Housing Department

Cyprus

Agia Kyriaki Footbridges

Kato Paphos
-2010-2012
Built over a famo archaeological site Facilitates access to the arnaeological site for disabled Visitors and those with reduced mobility

The bridges have metal frames and wooden ecks in order to provide elasticity in movement and to allow the best possible view over the archaeological site while causing minimal interference with the surrounding landscape. The bridges are 350 metres long and 2.05 metres wide. Their height ranges from 5 cenThe materials use
The materials used were wood for the deck The footbridges are located at the arch logical site near the church of Agia Kyriaki in Kato Paphos.
The main purpose of their construction was to facilitate access to the archaeological site for people with disabilities or reduced mobility. The development of the footbridges also
represents a pilot project in the island of Cy prus.
The archaeological site is most famous for column known as St Paul's Pillar situated near the church. Local legend has it that in he year AD 45 St Paul was tied to this column and scourged with "forty lashes less accessible tourist destinations in the Paphos region

Czech Republic

The Charles Bridge in Prague is a national cultural monument, one of the first to be included in the list of UNESCO World Heritage Sites. It is also an important tourist attraction offering a fine view of the unique silhouette of Prague Castle and the surrounding Hradčany district. It lies on the historic Roya Route, once used by the kings of Bohemia during coronations.
From Knights of the Cross Square (Křižovnické náměstí) in the Old Town, the Charles Bridge spans he Vltava, crossing the tip of Kampa, an island in the river which can be accessed via steps from the bridge Island, and passing over the Certovka canal to the Mala Strana (Little Quarter) side, where it is
protected by two bridge towers. It stands on the site of the earlier Judita Bridge, a stone bridge in the Romanesque style which was completely destroyed by a flood in 1342 . The foundation stone of the ne Gothic bridge was laid by Holy Roman Emperor and King of Bohemia Charles IV on 9 July 1357. Work is believed to have been completed in 1411. The first builder was the master stonemason Otto. Following Otto's death, construction continued under the direction of Petr Parlér. The bridge incorporates he Old Town Bridge Tower, which was completed in 1395. The bridge has experienced ten large to atastrophic floods over the course of its history, all of which caused major damage to its structure, in subsequently restored to their original appearance, but with lightened arches. The foundations of the new piers stood on a load-resistant base and were built with the help of caissons. The last flood to hit the bridge occurred in 2002. Fortunately, the bridge survived this flood without damage, although the wate level reached a height of around 8 metres above its normal level. The bridge's better resistance to thi flood was due in particular to a modification to the bridge's foundations and structural modifications to he bridge deck (an integrated reinforced concrete slab). As well as by natural disasters, the bridge has been affected by human activities. Many historical events have affected its appearance and frequently damaged it. The greatest damage was caused by a Swedish invasion in 1648 , and by fighting in the with the construction of pedestals above the cutwaters of the bridge piers, on which baroque sculptures were placed. This gave the Charles Bridge its current unmistakable appearance. Between 1883 and 1905 a horse-drawn tram operated on the bridge, using two sets of rails, one for each direction. Three years later the horse-drawn trams were replaced by electric trams. The rails were removed from the bridge in 1914. In 1866 the oil lamps dating from 1723 were replaced with gas lights. Since 1978, th Charles Bridge has only been used as a pedestrian bridge.

The more recent history of the bridge is marked by a series of repairs and renovations, beginning with the complete renovation of the bridge deck which took place between 1965 and 1974. The bridg structure is subject to significant stresses caused by temperature fluctuations over the course of the year. This results in cracks, which extend through masonry joints as well as through the facing stone The penetration of water into these cracks and the deposition of ice in winter can seriously damag he stonework. The main goal of the renovation was the insertion of waterproofing layers in the bridge tructure. Waterproofing had not previously been incorporated into the bridge. Together with the new insulation, it was decided to insert a reinforced concrete slab which would serve as a base for the new ystem of layers in the bridge deck and at the same time reinforce the bridge in the horizontal directio an important reinforcement during floods, when the tops of the arches are subjectar Regrettably, however, it soon became evident that the repair did not satisfy the demands. Therma dilatations of the reinforced concrete slab, which was firmly joined to the breast walls, pushed the stone parapet outwards, causing it to lean. This process was accelerated by the penetration of rainwater int he contact area between the insulation and the parapet, and by freezing in winter. The waterproof ing material (asphalt IPA sheet) was unable to provide the necessary permanent waterproofing. It was herefore decided to carry out a complete repair of the bridge deck and parapet
The envisaged repairs included full restoration of the waterproofing layer, replacement of damaged Tones in the parapet and restoration of the balustrade to its original position. The bridge is still only open maintenance, monitoring and repair of the bridge. The waterproofing interventissary for the operation, een 2007 and 2010 C enan mainenance of the bridge show that the last phase of repairs can be considered to have been successful. Th next phase of repairs will include repairs to the entire facing of the bridge. This will take place in stages.

All stones that do not meet the physical-mechanical characteristics required for their structural function, particularly in the arch areas, will be replaced. Constant and regular maintenance of the bridge is a fundamental condition for the permanence of the bridge structure and its survival as an indispensable part of Prague's heritage.

Czech Republic

Eridge over the Vitave

\square Prague-Troja suburb
■ 1983-1984

- Flooded in 2001 without any damage
-Good results in dynamic tests

This bridge, which has a total length of 261.20 metres, crosses the Vltava in Prague Troja, a suburb to the north of Prague. It connects Prague Zoo and Troja Palace with the sports facilities situated on Emperor Island and with Stromovka Park.
The bridge has three spans measuring 85.50 metres, 96.00 metres and 67.50 me tres respectively; the sags at mid-spans are
$1.34,1.69$ and 0.84 metres respectively The stressed ribbon is formed by precast segment and cast-in-place saddles (pier tables) connected to intermediate piers. Concrete hinge at the bottom of the piers allow rotation of th

ridge in a longitudinal direction. The horizontal force from the stressed ribbon is resisted by wall diaphragms and micropiles.
Following the casting of the end abutment, the solid segments were positioned on neoprene pads situted in the front portion of the abutments. The first halves of the main cables were then pulled across the river and tensioned to the design stress. The cables were supported by steel saddles situated on the piers.
The segments were then erected using a mobile crane. The segments were positioned on the main The segments where thifted along them into the design position. The segments of the side spans were erected first, followed by the segments of the main span.
Once all the segments had been erected, the second halves of the bearing cables were pulled and tensioned to the design stress. In this way the structure reached the design shape. The steel tubes that form the ducts in the joints between the segments were then put into place, and prestressing cables were pulled through the deck
The reinforcing steel of the troughs and saddles was positioned and the joints, troughs and saddles were cast. The side spans were cast first, followed by the central span and saddles. The saddles we ast in formworks that were suspended on the already erected segments and supported by the piers.
The static assumptions and quality of the workmanship were also checked by a static and dynam oading test. In 2001, when Prague was hit by an exceptional flood, the pedestrian bridge was totally flooded. Careful examination of the bridge after the flood confirmed that the structure had suffered no structural damage
The bridge has met with a positive response from the public and no problems with static or dynamic The bridge has met with a positive response from the public and no problems with static or dynamic he bridges by excessive vibrations caused by people (e.g. in a case of vandalism) and that the speed of motion caused by people is within acceptable limits.

The bridge was designed by Jiří Stráský and Ilja Hustý and built by Dopravni stavby \& Mosty, Olomouc.

Main technical characteristics
Stressed-ribbon bridge - length: 261.20 metres;
span lengths: $85.50+96.00+67.50$ metres; width between the railings: 3.00 metres

Czech Republic

This suspension bridge, built in 1993, is located in a beautiful, wooded recreation area where Lake Vranov was created by a dam in the 1930s. The structure replaced a ferry service carrying people between a public beach on one side the lake and accommodation, restaurants and shops located on th other side. The structure was also designed to carry water and gas lines
A very slender deck of a depth of just 0.40 m is suspended on two inclined suspension cables over hree spans measuring 30,252 and 30 metres. The cables run across steel saddles situated at the diahragms of the concrete pylons and are anchored in anchor blocks. The pull from the cables is transconcrete ties.
To stiffen the structure against the effects of the wind load, the deck is widened from mid-span oward the pylons. The deck is suspended at its outer edges on hangers that are perpendicular to the ongitudinal axis. It was assembled from precast segments of double-tee cross-section, stiffened by diaphragms at the joints. The 3 -metre segments have a variable width corresponding to the variable width of the bridge deck. The two end segments are solid. Steel pipe conduits for gas and water line by four internal cables that are led through the whole deck and anchored at the end segments. The vertical and horizontal curvatures allow stabilisation of the structure by stiffening the external cables situated within the edges of the deck; the cables pass across the expansion joints and are anchored at the end abutments.
The deck is supported at both ends by two multi-directional pot bearings situated on the pylon dia The deck is supported at both ends by two multi-directional pot bear
phragms. Horizontal force due to wind is transferred by steel shear keys
The main cables are formed by $2 \times 108-15.5 \mathrm{~mm}$ diameter strands grouted in steel tubes. To elimiate tension stresses in the cemp mortar of the suspension cables, the deck was temporarily loaded efore the cables were grouted. The load was created by radial forces caused by the tension of th external and internal cables temporarily anchored at the abutments. The suspension cables are fixconnected with the deck at mid-span. The hangers are formed from solid steel rods of 30 mm diameter and pin-connected to the deck and main suspension cables.
The inclined pylons have an A-shape with curved legs connected by top and bottom diaphragms The legs of the pylons were post-tensioned by draped cables to balance the bending stresses due to he curvature of the legs. During erection of the structure, the pylons were supported by pins; following erection the pylons were cast in the footings. The anchor blocks protruding above the grade were post
The bridge forms a partly self-anchored system in which the arched deck is suspended on the cable and is flexibly connected with the abutments that, in turn, are mutually connected with the anchor blocks by prestressed concrete tie rods.
Construction of the bridge began in spring 1991 and was completed in spring 1993. Due to the rec eation season from June to mid-September and severe winter conditions, construction work could only be carried out in the spring and autumn months.

Although the structure has a very slender deck, users feel no unpleasant motion of the bridge eithe when walking along it, or when standing and observing the surroundings. The bridge is widely used not only for crossing of the bay but also as a meeting place and for bungee jumping
The bridge was designed by Jiirí Stráský and built by Dopravni stavby \& Mosty, Olomouc.

Main technical characteristics

Suspension bridge - total length: 312.00 metres;
pan length of the suspension cables: $30.00+252.00+30.00$ metres deck length: 252.00 metres
width between the railings: from 3.40 to 6.60 metre

Czech Republic

Bridge over the VItava
-České Budějovice
-2005-2006

- Structure of the year 2006

Czech Republic
Bridge of the year 2007, Czec
Republic
Republic
his footbridge in Ceské Budějovice connects the historic town centre with a new residential area The bridge consists of a tied arch inclined to one side and anchored to a composite deck. The arch has a span length of 53.20 metres and a rise of 8.00 metres and is formed by a steel pipe; the suspenders are formed from I-shaped steel members. The deck is formed by two edge pipes mutually connected by a truss floor beam and a composite deck slab. The steel structure is supported by a short cantilever protruding from the end diaphragm. To resist bending moments, the diaphragms are supported by a pair composite deck slab was cast.

The bridge was designed by Stráský, Hustý a partneři s.r.o. of Brno and built by JHP Mosty of Prague.
Main technical characteristics:
Arch bridge - length: 64.5 metres
Arch bridge - length: 64.5 metres; width between the railings: from 3.52 metres

Czech Republic

Bridge over the river Svratka
- Brno
- 2007
- Award for Outstanding Structures 2010 FIB - International federation for structural concrete. III Congress in Washington DC
2008 Footbridge Awards in the aesthetics medium-span and technology medium-span categories

This pedestrian bridge connects a newly developed business area (the Spielberk Office Centre) with he old town centre. It is situated in the vicinity of a new international hotel and prestigious office buildngs. An older, multiple-span arch bridge with piers in the river stands nearby It was clear that the new bridge should also be an arch structure, but a bold span without piers in the riverbed was required. Du force would be too expensive. It was therefore decided to built a combination stressed-ribbon and arch structure. Both ribbon and arch are assembled from precast segments of high-strength concret and were erected without any temporary supporting structures. The smooth curves characteristic of stressed-ribbon structures allowed a soft connection of the bridge deck with both banks
The deck of the bridge is formed by a stressed ribbon that is supported by a flat arch. Since both the tressed ribbon and the arch share abutments, the structure forms a self-anchored system that stresses its footings with vertical forces only. Because the riverbanks are formed by old stone walls, the abut ments are situated beyond these walls. The abutments are supported by pairs of drilled shafts. The
abutments serve as arch footings, stressed ribbon anchor blocks and struts. The rear shafts are stressed by tension forces while the front shafts are stressed by compression forces. These forces balance the tension and compression forces originating in the stressed ribbon and arch. The abutments function as compression struts transferring the tension force from the stressed ribbon into the compressed arch The arch has a span of 42.90 metres and a rise of 2.65 metres, giving a span-to-rise ratio of 16.19:1 The arch is formed by two arms that are further apart at the crown and merge at the foot. The 43.50-mere stressed ribbon is assembled from 1.5-metre segments. In the middle portion of the bridge the stressed ribbon is supported by low spandrel walls whose depth increases with the fall of the arch. At midspan the arch and stress ribbon are connected by 2×3 steel pins that transfer the shear forces from ing of 12 monostrands of $0.6^{\prime \prime}$ diameter grouted in PE ducts. The segments are of variable depth with a curved soffit. The stressed ribbon and arch were made from high-strength concrete with a characteristic trength of 80 MPa .
The arch was assembled from two arch segments that were temporarily suspended on erection cables anchored to the abutments. Next, the midspan joints were cast and the erection cables were replaced by external cables that tied the abutments. Then the spandrel walls were cast and the segments were erected. The segments were successively positioned on the arch spandrel walls, and then on the exter-
nal cables. The internal cables were then pulled through the ducts and tensioned. Finally, the external cables were removed. In this way, the required geometry of the deck was obtained. After casting the oints between the deck segments, the cables were tensioned up to the design stress and, as a result, he deck was prestressed.
Although the bridge is very slender, it is very stiff and no unpleasant sensation is noted by user standing on or walking across the bridge. The static function and quality of the workmanship were
checked by means of a loading test, during which lorries were positioned at various points on the deck

The construction of the bridge started in February 2007 and was completed in September of the ame year. The new structure has been well received by the public
The bridge was commissioned by CTP Invest, s.r.o., Czech Republic, designed by Stráský Hustý a partnê̌i s.ro. of Brno in collaboration with Studio Acht of Prague and Rotterdam, an built by SKANSKA DS, Division 77 Mosty, Brno.

Main technical characteristics

Stressed-ribbon bridge supported by arch - length 51.60 metres, tressed ribbon length 43.50 metres,
rch span length 42.90 metres
width between the railings 3.00 metres

Czech Republic

Bridge over the RB508
expressway
expressw

- 2010
- Extremely slender structure
- Arch span length 64 metres

The bridge crosses the R3508 expressway near the city of Olomouc. The bridge is formed by a two-span stressed ribbon supported by an arch. The 76.50 -metre stressed ribbon was assembled from precast 3.00 -metre segment supported and prestressed by two external ca-
bles. end struts are made of high-strength concrete with a characteristic strength of 80 MPa . The cast-in-place arch is made of high-strength concrete wit characteristic strength of 70 MPa . The external cables are formed by two bundles of $31 \times 0.6^{\prime \prime}$ diameter monostrands grouted inside stainless steel pipes. They are anchored at the abutments and run ove addles formed by the arch crown and short spandrel walls.
Steel pipes are connected to the deck segments by bolts located in the joints between the segments. At the abutments, the cables are supported by short saddles formed by cantilevers that protrude from he anchor blocks. The stressed ribbon and arch are connected to each other at the centre of the bridge. The arch footings rest on drilled shafts while the anchor block foundations consist of micropiles.
The bridge was erected in several stages. After the piles were placed, the end struts were erected and he arch footings and anchor blocks were cast. The arch was cast in a formwork supported by light scaf folding. When the concrete of the arch had sufficient strength, the external cables were assembled and ensioned. Then the precast segments were erected. Once the forces in the external cables had been adjusted, the joints between the segments were cast, after which the external cables were tensioned up o the design stress.
The structural solution was developed on the basis of tests and a very detailed static and dynamic nalysis. Great attention was also paid to analysis of the buckling of the arch. The stability analysi proved that the structure has a sufficient margin of safety. Although the structure is extremely slender no unpleasant sensation is noted by users when standing on or walking across the bridge. The bridge was built in 2007 .

The bridge was designed by Stráský, Hustý a partneři s.r.o. of Brno and built by Max Bögl a osef Krýsl, was desig

Main technical characteristics
tressed-ribbon bridge supported by an arch - length 83.00 metres, tress ribbon length 76.50 metres,
ch span length 64.00 metres;
vidth between the railings 3.50 metres

Czech Republic

This bridge, which is used by both pedestrians and cyclists, has a curved plan of a radius of 220 metres. The motorway, currently under construction, is located in the north-east of the country and the bridge will be the first flyover on the way from Poland.
The bridge ha two of 54.937 and 58.293 .
 ments formed by inclined front walls and rear walls forming anchor blocks
In the preliminary design stage, a deck of an effective width of 6.00 metres was suspended from two
nclined planes of stay cables. The deck was formed by a slender deck slab stiffened by transvers diaphragms and edge girders protruding above a sidewalk. The stay cables were anchored to anchor blocks situated outside the edge girders.
Due to heavy bicycle traffic, the city of Bohumin required the pedestrian and bicycle pathways to be separate. The deck was therefore modified. It is formed by a central spine girder with asymmetrical cantilevers carrying the pedestrians and bicycles. To balance the load, the shorter cantilever is solid e the longer is formed by a slender slab stiffened by transverse ribs.
The pylon is formed by two inclined columns of two-cell box sections tied by top and bottom stee pates connecting the boxes' central webs. The boxes are filled with concrete that was pressed from the
To reduce the torsional stress. The stays are anchored to the central webs. ral portion of the deck supported by stay cablead load, the deck wis had been suspended from the stay cables, the end sections were cast. The structure was then prestressed by continuous cables situated in the central web. The forces in the stay cables, together with the forces and the layout of the prestressing ables, balance the effects of the dead load
Although the bridge is very slender it is very stiff, and no unpleasant sensation is noted by user when standing on or walking across the bridge. The static function and quality of the workmanship were when standing on or walking across the bridge. The static function and quality of the workman The construction of the bridge that was completed in fall 2010 is very stiff and comfortable to users.

The bridge was designed by Stráský, Hustý a partneři s.r.o. of Brno and built by SKANSKA DS Division 77 Mosty, Brno, Czech Republic

Main technical characteristics

Cable-stayed bridge - length 113.23 metres pan lengths $54.94+58.29$ metre
width between the railings $2.25+3.00$ metres

Czech Republic

Sport Bridge over the river
Olse/Olza
■Český Těšín/Cieszyn
-2011-2012
Connecting Česky Těšín and Cieszyn

- The bridge has a curve of 100 metres
■Total length 95.40 metres

A pedestrian bridge over the border rive Olše/Olza connecting Cesky Těšín on the Czech side and Cieszyn on the Polish side. In view of existing pedestrian and cycling path and the level of the river during floods, bridge has a horizontal curve radius of 100 metres nd a maximum slope of 5.70 \%
The pedestrian bridge is formed by a curved box girder of four spans measuring $17+45$
$18+13$ metres. In the main span bridging the river (on the inside of the curve) the girder is stiffened by an inclined arch. The arch's vertical rise is 6.75 metres, its inclination is 30° and the inclination of the suspenders is 45° The box girder, which has an asymmetrical
cross-section, is fixed into the abutments and forms a composite with a 120 mm thick concrete slab. The box girder is stiffened by curb that protrude above the sidewalk surface. The external cables anchored to the abutmen wings are led through these curbs. The cables are composed from monostrands
The composite box girder, which has a metres, has a markedly asymmetrical cros metres,
section so that its shear centre is as close as pos sible to one side suspension. The box section is stiffened by diaphragms at intervals of 3.00 metres. The transverse position of the pier
corresponds to the asymmetrical cross-seccorresp.
tion.
The

The arch has a parabolic shape and is formed by a steel pipe of 457 mm diameter The pipe's thickness of 25 mm increases to 40 mm at the foot of the arch. The pipe is filled by C30/37 concrete that was pressed from the
arch foot to the crown. The arch pipe is welded arch foot to the crown. The arch pipe is welded
to cone base plates of a thickness of 200 mm .

The horizontal component of the arch force is transferred from this plate into the whole section by a lo-
cally stiffened bottom plate and by diagonal stiffeners.
The composite deck slab is fixed into the abutments together with the steel girder. The abutments and piers stand on drilled piles with a diameter of 900 mm . The piles, measuring 8 to 10 metres, are driven When the piles abutments and piers were completed the steel deck and arch were erected Due to hen the piles, abding, the structure was erected on temporary towers that were supported by a trus structure bridging the riverbed. Since during construction the structure experiovoted to determination of camber and the positioning also distortion of he deck, great atlention exsine of the supports.
Because the supports had to allow horizontal movement and deck distortion, the erected girder was not supported but suspended on towers. The girder was assembled from six segments of lengths ranging 0.80 to 18 metres. The arch was assembled from three segments of length ranging from 10.50 During te
During tensioning of the cables, the structure moved transversally into the designed position. Subseuently, the neoprene bearings were engaged and the piers' temporary supports were removed.
The bridge was analysed as a geometrically non-linear space structure by ANSYS simulation software. Global analysis was performed on a space bar model, while complex details were analysed on a 3D model consisting of a shell and solid elements.
Stability and dynamic analyses of the structure were also important part of the design. The arch stabilty was checked for possible imperfections and for wind load and progressively increased live load. In is close to the pace frequency, the structure was checked for vibration. The analyses proved that the structure has a sufficient margin of safety and that vibration of the structure caused by people or the action of the wind does not cause discomfort. Design assumptions and the quality of the workmanship were verified by static and dynamic loading tests.
The bridge was designed by Stráský, Hustý a partneři s.r.o. of Brno, and built by EUROVIA CS of Prague

Estonia

Viljandi suspension bridge

■ Viljandi

■ 1879- original bridge
-1995 - renovated
\square Steel pylons, cables, main beams,
cross-beams, handrails
-Timber deck

- A symbol of Viljandi

This 50 -metre suspension bridge in Viljandi spans a valley in the castle park. The original bridg was built in 1879 by Felser \& Co. of Riga for a different location in the grounds of Tarvastu Manor In 1930 the lord of the manor presented the bridge to the town of Viljandi and it was re-erected in its present location, where it has become a symbol of the town and a popular attraction for visitors and ocals alike. The pylons are original but the cables and deck have been renovated several times, most recently in 1995

Estonia

The landscape garden at Keila-Joa Manor was designed in 1844 by Count Alexander von Beckendoff. The garden was reconstructed in 1890 under the guidance of the architect Winkler. The longer of he two suspension bridges (today protected as a cultural monument) was built towards the end of the ineteenth century.
The area of the garden containing the two suspension bridges currently belongs to the State Forest Management Centre
The bridges are close to Keila-Joa waterfall, a popular attraction which is particularly beautiful in pring and winter. The waterfall is $60-70$ metres wide and 6 metres high
mension bridges were renovated in 2013.
Materials: pylons, cables, main beams and cross-beams, handrails (steel), deck (timber)

Estonia

Kasari Old Bridge
 - Matsalu National Park
 Lääne County
 - 1904
 The longest concrete bridge in Europe when concrete b - Used as a footbridge since 2000
 - Total length 308 metre, 13 spons of 4 metres, width 6.5 metres

This 308-metre reinforced concrete bridge spans the river Kasari. It was designed and built by the rench-Swiss company Monicourt \& Egger. It consists of 13 arches with spans of approximately 21. metres. The reinforced concrete arches are supporting on piers made of hewn granite blocks that also erve as icebreakers.
Construction took place between January and September 1904. On completion, the bridge was the ongest reinforced concrete bridge in Europe.
ongest reinforced concrete bridge in
The bridge is paved with cobbles
and was used for motor traffic until 1990
Since being renovated in 2000, the bridge has been used as a footbridge. The bridge is attractively illuminated at night

Estonia

This single-span arch bridge is an elegant example of a concrete bridge from the early twentieth century. It was commissioned by the authorities in 1913 to mark the 300th anniversary of the Russian mperial House of Romanov. It is situated in the very heart of the university city of Tartu and spans a oad in the fortress hill area, a favourite location for romantic walks for locals and tourists alike

Estonia

Tartu Arch Eridge
Tlartuk

- 1957-1959
- Span 57 metres
- Arch width 1 metre

Arch rise 8 metres

This footbridge over the river Emajõgi wa built between 1957 and 1959 on the foundations of an old stone bridge destroyed during the Second World War. It is a single-span concrete bridge, with a central tied arch, concrete on either side of the arch

Estonia

Nömme Footbridge

Tallinn

1986
Used bypedesurian, oyclists,
joggers and skiers
Total length 7 2 metres
Main span 30 metres, width metres

Nõmme is a green district mainly consisting of private houses surrounded by large areas of fores. Founded by Nikolai von Glehn in 1878, today it forms one of the administrative districts of Tallinn This steel frame bridge connects the hillsides on either side of the road and provides a convenient crossing for pedestrians, cyclists and skiers. Mente et manu - with mind and hand - is the motto of Tallinn University of Technology. The bridge is located near the university campus and was designed by Johannes Aare and Valdek Kulbach. Jogging, cycling and skiing students are the most frequent load of thin-walled steel sections. The deck is located on the bottom flange of the beams, which serve also as handrails and safety barriers. The deck slab is made of trapezoidal steel sheeting and covered by concrete.

Lükati Ski Bridge

Tallinn

2005
Used by skiens in winter
Length 36 metres, width 4 metres
Parallel glulam arch ribs

The main load-bearing structure consists two parallel glued laminated timber (gluam) arch ribs, while the deck is suspended from steel hangers. The bridge provides a safe and convenient crossing for skiers in a recreaional area in the suburbs of Tallinn.

Estonia

Phot: Andrese Brakman

This single-span beam bridge creates a straight connection from the ground floor of the main buildin of EULS to the neighbouring sports hall, crossing a small stream. The aim of the designer was to create a modern natural landscape around the modernist blocks of the university buildings. The beam bridge with its minimalist form, was chosen because it is unobtrusive and does not hide the buildings or the view The main structure consists of two reinforced glulam beams with a cross-section of $200 \times 1320 \mathrm{mil}$ destrians. The olulam beams are reinforced by steel bars glued into the grooves of the beam section. The einforcement, which is placed in both compression and tension zones, increases bending resistance by up to 1.3 times and also increases bending stiffness so as to satisfy the deflection limits. All steel details are cut into the timber, both for aesthetic reasons and in order to protect them against the effects of the environment. The deck consists of boards nailed together to form a diaphragm, providing lateral stiffness.

- Pärnu
- 2010

Span 31.5 metres
Uutstanding aum structure of the year in 2010

The Vallikraavi footbridge spans the moat in Pärnu, a favourite summer resort in Estoiia. The deck lies atop a low-rise arch and the lighting design makes the bridge attractive at night. The arch is made of glulam timber with a steel tie rod. In 2010 the bridge won a naonal award as the outstanding glulam strucure of the year

Estonia

Seaplane Harbour Footbridges
[Estonian Maritime Museum]

Tallinn

- 2011
-Total length of footbridges
-Width 2.5-4.0 metres
- Winner of major E $ப$ award in

The hangars in the Tallinn Seaplane Harbour are the most important engineering landmark in the re gion (designed and built by the Danish company Christiani \& Nilsen Ltd in 1916/17). They are thought to be the first large-scale
reinforced concrete shell structure in the world. The building consists of three main reinforced conrete shells measuring 36.4×36.4 metres (average thickness $8-12 \mathrm{~cm}$).
Renovation of the hangars was carried out between 2009 and 2012 (architectural project by KOKO Architects, engineering and technical project by Karl Õiger and Heiki Onton) with the aim of transThe architects came ap with the ide Estonian Maritime Museum.
erwater world and the world above the of a two-level space that would create an impression of the un-都 above the water without actually flooding the hangars. This "two worlds
 inside the hangars.
Visitors view the exhibits from "sea level" using the 210-metre steel footbridge that passes through e hangar.
A second footbridge marks the radius of the arc of the reinforced concrete shell.

Arts Bridge
Paris, over the Seine

- 1804
- One of the most beautiful bridges in Paris
- The first cast-iron bridge in

Reconstructed 1981-1984
Text by Jean-Louis Bordes

The Pont des Arts is a pedestrian bridge over the Seine in Paris. It is located at the heart of one of he world's most magnificent urban sites, inscribed on the UNESCO World Heritage List. It links the entral square (cour carrée) of the Louvre Palace including its Renaissance wing - known as the Palai des Arts during the First Empire - to the Institut de France, home of the Mazarin Library (Bibliotheque near the middle of the bridge, one can enjoy the amazing urban scenery. Upstream are the towers of Notre Dame Cathedral, downstream the Eiffel Tower, and all around the domes of monumental buildings, the legacy of nine centuries of French history.
The deck of the bridge is 11 metres wide and an inviting place to stroll. The footbridge is a meeting place which inspired the song "Le Vent" (Si par hasard, sur l'Pont des Arts...) by Georges Brassen. who warns ladies of the mischievous wind whipping up their petticoats.
The Pont des Arts is also a monument to engineering history. It was the first metal bridge in France 1801-1804), built some years after the famous Iron Bridge near Coalbrookdale in England, the firs east-iron arch bridge in the world (1779). The site was chosen by Napoleon, then First Consul, who now of France's importance
Louis Alexandre de Cessart and his pupil Jacques Lacroix Dillon originally designed the structure with nine cast-iron main arches each with a span of 16.80 metres. The arches were made of circula arc trusses hinged at the key with transversal strut bars acting as sway braces. Overlapping longitudinal arcs connect the main arches over each pier. Several types of joints, including dovetails, double nembers and key pins, were used to assemble the structure in order to avoid drilling into the cast iron. The piers were of masonry. The wooden decking is horizontal.
Unfortunately, however, the cast iron of the original structure proved too brittle to resist shocks. In for safety reasons. It was reconstructed "identically" between 1981 and 1984. Although the number of rches was reduced to seven, the appearance of the original bridge was preserved. The new bridge was opened on 27 June 1984 by Jacques Chirac, then mayor of Paris.

Main technical characteristics

Structural type: 7 steel arches, spans 22 metres
Structural type: 7 steel
Vidth: 11 metres (present bridge)
Geographical coordinates: $48^{\circ} 51^{\prime} 30^{\prime \prime N} 2^{\circ} 20^{\prime} 155^{\prime \prime} \mathrm{E}$
Designers: Louis Alexandre de Cessart and Jacques Lacroix Dillon (1804) Louis Arretche (1984) Contractor: Entreprise Morillon Corvol Courbot EMCC

The Passerelle du Collège is the oldest surviving crossing of the Rhône in the centre of Lyon.
It takes its name from the Collège-lycée Ampère, formerly the Great College of the Jesuits under the It takes its name from the Collège-lycée Ampère, formerly
Ancien Régime, which stands on the right bank of the river.
The footbridge was built in response to pressure from the inhabitants of the left bank, who had no public high school. The bridge allowed students from the left bank to cross safely, without having to make a detour to cross the Pont Morand or Pont Lafayette
Although the Rhône Bridges Company was reluctant to follow up the official request of 1840, it wa instructed on 28 May 1842 to start construction of a three-span suspension footbridge with steel cable
With the bridge nearing completion, a tragic accident occurred on 7 December 1844. A bolt holding

cable in its sheath broke The deck collapsed the contractor M. Santil died and eight of the 25 work rs were drowned. The work restarted rapidly and the footbridge was opened to pedestrians in earl September 1845
An imperial decree of 6 October 1860 mentions that the toll was abolished following the repurchase of the concession by the French State
In 1944 the German Army dynamited the footbridge. The suspension cables were broken, the deck collapsed and the piers were severely damaged, as were the carved statues of two lions which marked the entrance to the bridge. The footbridge was rebuilt exactly as it was, except for the statues. It was eopened to pedestrians in September 1945
A full restoration was carried out in 1986 and in 1987 the wooden deck was replaced with aluminium plates with anti-slip cladding.
Despite the footbridge's eventful history, traffic on the Passerelle du Collège is still intense and it day by pedestrians and, more recently, bicycles to cross the Rhône between the old and

Main technical characteristic

Structural type: suspension bridge -3 steel spans: main span 109.70 metres; side spans 42 and 46 metre Total length: 198 metres
Wotal ength: 198 metres
Geographical coordinates: $45^{\circ} 45^{\prime} 41.00^{\prime \prime} \mathrm{N} 4^{\circ} 49^{\prime} 48.00^{\prime \prime} \mathrm{E}$
Built: August 1843-September 1845
Designers: Cailloux, Garella
Contractor: Santil (1844) and Société Arnodin (1985)

Canal Saint-Martin Footbridges

- Paris, over the Canal

Saint-Martin

- 1825-1860
-Represent the development
of iron and steal bridge
construction in the 19th century
Text by Lucien Pliskin

The Canal Saint-Martin in Paris was built in order to create a bypass of the Seine at low water, faciliating navigation through Paris, and to develop industrial activities on its banks.
Its construction was decided in 1802 by Napoleon Bonaparte, then First Consul. Later on, as Emperor, Napoleon issued the order to commence work on the basis of a project by the civil engineer Pierre-Simon Girard. Construction was postponed several times owing to financial difficulties, but wa ompleted in 1825.
The canal crosses numerous streets in the north-east of Paris, so several bridges and footbridges had o be built in order to re-establish the connections between them.
The footbridges crossing the Canal Saint-Martin include, from south to north, the Douanes (or Tem-號 hey are separated from each other by a distance of between 300 and 500 metres. Their spans range from 30 to 35 metres and their width from 2 to 2.5 metres.
Built between 1860 and the end of the nineteenth century, these footbridges are a veritable museum of steel bridge construction. Due to the variety of approaches employed, they clearly illustrate the pro gress of nineteenth-century bridge building:
the Douanes footbridge (also known as the Temple footbridge) consists of a three-ribbed arch on masonry supports. Each arch rib
is made up of 8 curved cast-iron sections joined by bolts.
the Grange aux Belles footbridge consists of a three-ribbed arch on masonry supports. Each arch rib is made up of 7 curved cast-iron sections joined by bolts.
the Alibert footbridge consists of a two-ribbed arch on masonry supports. Each arch rib is made up of curved steel sections joined by rivets.
the Richerand footbridge is a rigid frame bridge consisting of two parallel girders with masonry sup ports. Each girder is made of soldered steel plates.
These footbridges enhance the canal surroundings and evoke the spirit of nineteenth-century Paris The ships and barges ong up and down the canal increase the appeal of the area for tourists

Buttes-Chaumont Footbridge
Paris, Buttes-Chaumont Park
1867
Builthy Fiffel et Cie

Text by Georges Pilot

This suspension footbridge, 65 metres long, is located in the Buttes-Chaumont Park in north-east Paris. It is one of the very few suspension bridge
etoday.

The resources of the Buttes-Chaumont rea had been exploited since 1789, mainly hrough underground mining, for the production of gypsum and construction stone. This activity continued until 1860, leaving a devstated landscape in its wake.
Later on, as part of the rebuilding of Paris Juring the Second Empire (1852-1870), Napoleon III decided to transform this desolated
area into a 25 -hectare park. Buttes-Chaumont Park was inaugurated in 1867 to coincide with the International Exposition of 1867
The lower part of the park comprises a lake with, at its centre, an island rising to a height of 30 metres and topped by the Temple de la Sibylle.
The park was created under the direction of Jean-Charles Alphand, Ingénieur des Ponts et Jean-Charles Alphand, Ingénieur des Ponts et
Chaussées, who was in charge of preparations for the International Exposition, along with the engineer Eugène Belgrand, the architect Gabriel Davioud and Paris's chief gardener Jean-Pierre Barillet-Deschamps.
The footbridge, built in 1867, passes eight metres above the level of the lake and allows pedestrians to reach the island. It is suspend-
ed from two pairs of twin steel cables, each of which supports a steel girder and a wooden deck.
The Buttes-Chaumont footbridge was used as the model for a similar bridge in Cairo Zoo, also built by Eiffel et Cie

France

he Debilly Footbridge and the Army and Navy Halls during the 1900 Exposition Universell

Debilly Footbridge

- Paris, over the Seine
- 1899-1900
-Historical monument of Paris
■ Has inspired several film-makers

In order to accommodate visitor traffic across the Seine during the Exposition Universelle of 1900 he Exposition's General Commissioner, Alfred Picard, approved the construction of a footbridge oppo site the Avenue Albert de Mun, to join the Army and Navy Halls to the exhibition recreating old Paris. This footbridge was originally designed to be dismantled after the Exposition but was saved when the l'Alma and relocated opposite Rue de la Manutention. It was originally known as the Passerelle de l'Exposition Militaire and then as the Passerelle de Magdebourg. In 1906 it was given the more dignified name of Passerelle Debily
Debilly, a general of the First Empire who was killed at the Battle of Jena in 1806 .

The bridge was designed by the engineers Jean Résal, Amédée Alby and André-Louis Lion. Résal was a professor at the École Polyechnique and, with Alby, was also responsible for designing the Pont Alexandre III, built With.
With its steel arches and total length of ple of a steel structure from the early twentieth century, along with the Eiffel Tower. The central arch, 75 metres long, is supported by piers and hinged to the two side arches, 22.50 metres long, which are anchored to the abutments by vertically hinged truss rods to balon the banks are decorated with dark green ceramic tiles giving the impression of waves. Despite the bridge's history, in 1941 M. Bluyssen, president of the Society of Modern Architects, declared that the footbridge was a "forgotten accessory of a past event". Fortunately the Debilly footbridge was eventually moments (1966) and once again saved from monuments
It was repainted in 1991 and its decking as restored with tropical hardwoods
In 1989, a few days after the fall of the Berlin Wall, a German diplomat working for he secret services of the German Democratic Republic was found dead on the footbridge. It s a discreet meeting place for East German gents during the Cold War.
This event prompted Brian de Palma to set dramatic scene of his thriller Femme Fatale 2002) on the bridge. The footbridge has also inspired other film-makers such as Patrice Leconte, who made Girl on the Bridge staring Vanessa Paradis in 1999, and appears in singer Jenifer

Main technical characteristics

tructural type: 3 steel arches: main span 75 metres, other spans 22.5 metre otal length: 120 metres
Width: 8 metres
Geographical coordinates: $48^{\circ} 51^{\prime} 45 " \mathrm{~N} 2^{\circ} 17^{\prime} 49^{\prime \prime} \mathrm{E}$
Designers: Jean Résal, Amédée Alby and André-Louis Lion Contractor: Daydé et Pillé

France

Léopold Sédar Senghor
Footbridge
[Passerelle Léopold-Sédar-Senghor]

- Paris, over the Seine
- 1999
-Winner of France's highest architecture award in 1999 - Reopened in 2000 following resolution of technical problems

Text by Jean-Frangois Coste

The Passerelle Léopold-Sédar-Senghor, formerly known as the Passerelle Solférino, is a footbridge ver the Seine in Paris linking the Musée d'Orsay and the Jardin des Tuileries.
The original cast-iron bridge in this location was built in 1861 and opened by Napoleon III. This bridge was dismantled in 1961 because damage to its structure had made it vulnerable to impacts fron barges. It was replaced by a temporary footbridge replaced that was demolished in its turn in 1992. The present footbridge was designed by the architect and engineer Marc Mimram. It was built be (one high one low) on each riverbank. The supporting structure consists of two steel arch ribs assem led from curved sections and secured by transverse braces.
The bridge supports an asymmetrical deck with accesses from both the high and low quays meeting

at a central opening. The deck planking and tairways are made of finely grooved azobé, an xotic hardwood.
The steel structure represents a unique design and an innovative engineering solution d'Argent, France's highest architecture award, in 1999.
The footbridge was officially opened by the Minister of Public Works and the Minister of Culture on 15 December 1999. During the inauguration a gust of wind caused the sin-gle-span to sway and the Minister of Culture mpediately closed. This event led to questions being raised about the stability of the bridge. Lateral displacement was measured by having more than 100 people dance to a rhythm that would maximise the sway. Eventually the sway was significantly reduced by dampers positioned under the deck and the ootbridge was reopened in September 2000. prevent pedestrians from slipping.
The footbridge was renamed the
Leopold-Sédar-Senghor on October 2006, in memory of the Senegalese poet and statesman Leopold Sédar Senghor (1906-2001), the first African member of the French Academy. Today the footbridge is famous for the padacks that lovers leave on its railings.

Main technical characteristics
tructural type: Steel arch consisting of two parallel ribs joined by transverse braces, span 106 metres, otal length: 140 metres

Geographical coordinat
Desiger: Marc Mimram

France

Laroin Footbridge [Pyrenees-Atiantiques

- Laroin, over the river Gave de Pau
- 2002

Innovative structure

- A bridge with carbon-fibre cables
-Design and construction: Freyssinet International, Soficar Text by Georges Pilot

This cable-stayed footbridge is an innovative structure using carbon-fibre cables Crossing the river Gave de Pau, it provides direct access a water sports centre.
The footbridge comprises a single 110-metre span supporting a deck consisting of transverse 2.5 metres wide and 10 centimetres thick.

The deck is supported on either side and at extremities by four catbon-fibre cables attached to the deck beams. Compared to steel cables, car bon-fibre cables are lighter (one quarter of the weight), stronger and more durable. The cables are supported by two 20 -metre pylons, each of them linked to a backstay anchored in a concrete foundation. A special device was developed in order to facilitate the maintenance and eventual replacement of ables.
The bridge was designed and built by Freyssinet International \& Cie, using cables supplied b Soficar.

France

L'Estellier Footbridge [Alpes-di-
Haute-Provence department]
Over the river Verdon

12004

The bridge elements were
transported by helicopter
Assembled in difficult mountain
conditions
Text by Georges Pilot
Located in the dramatic landscape of the Gorges du Verdon, the 45-metre Passerelle de l'Estellier ootbridge spans the river Verdon. It is the only river crossing for pedestrians.
The Verdon is a river in south-eastern France with a total length of 175 kilometres. The section be ween Castellane and the Pont du Galetas, a distance of around 20 kilometres, is considered by many o be the most beautiful river gorge in Europe. Just six metres wide at its narrowest, the river is hemmed in by cliffs rising to heights of between 250 and 700 metres. This popular tourist destination is visited y numerous hikers, who follow hiking trails along herlier to cross the river
This footbridge is a steel arch comprising a three-dimensional structure with a V-shaped cross-section. The construction site has no road access so the footbridge was manufactured in sections in the work hop before being transported by helicopter and assembled on site
The bridge was designed by the architect Dominique Putz. The structural engineer in charge of the project was Alain Ranvier

Simone de Beauvoir Footbridge

- Paris, over the Seine
- 2006

The 37th bridge in Par

- One of the first structures built
according to Eurocode 3

Text by Noël Riche

The newest bridge in Paris - the thirty-seventh in total - is the Passerelle Simone de Beauvoir, th fourth crossing of the Seine for pedestrians and, more generally, non-motorised traffic. Equidistant from he Pont de Tolbiac and the Pont de Bercy, this bridge connects the front of the François Mitterrand de Bercy on the right bank. Spanning between the Quai Francois Mauriac and the Quai de Bercy, it de Bercy on the right bank. Spanning between the Quai François Mauriac and the Quai de Bercy, it he river and its environment. Since its inauguration on 13 July 2006 it has been used as a venue for a variety of events.
The total length of the footbridge including the access ramps is 304 metres. The main section (over he Seine) comprises a free span of 190 metres. The bridge is 12 metres wide and 6 metres high 3.20 metres at the ends of the central lens). The steel structure weighs 1,600 tonnes, with the main rossing weighing 1,100 tonnes (including 550 tonnes for the central lens). The steel grades used are oak planking of the deck has a total area of $4,000 \mathrm{~m}^{2}$.
Commissioned by the Department of Roads and Transport of the City of Paris, the bridge was de signed by the architect Dietmar Feichtinger. Supervision of the project was entrusted to a consortium consisting of Dietmar Feichtinger Architectes and RFR SAS. Construction was carried out by Eiffel Construction Métallique, Joseph Paris and Soletanche Bachy. The steel was supplied by Dillinger Hütte
GTS of Germany, which delivered 70% of it (including the thicker plates) to Eiffel's site in Lauterbourg GTS of Germany, which delivered 70% of it (including the thicker plates) to Eiffel's site in Lauterbourg Alsace). The remaining 30% was supplied by Duferco Clabecq of Belgium, which delivered it to Eif fel's various subcontractors.
The bridge was one of the first structures designed according to Eurocode 3
The bridge was manufactured almost in its entirety (95%) at Eiffel's Lauterbourg site. The central ens, a major part of the bridge (650 tonnes, length 106 metres, width 12 metres), was transported down he Rhine from Lauterbourg to Rotterdam. From there it travelled by sea to the mouth of the Seine and then up the river to Paris. It was then hoisted into position in its final location (between midnight and 3.00 a.m. on the night of 28 January 2006). Manufacturing and on-site work began in June 2004. The work was completed in June 2006. The final test under dynamic loading (known as
place on 10 July 2006 under the supervision of technical assessment body CSTB.

France

Three Countries Footbridge

 [Haut-Phin department][Passerelle des Trois Pays)
\square Huningue, over the Rhine

- 2007

World's longest-span pedestrian briage
Winner of the 2008 Deutsche unchbaupreis
Fext by Bernard Raspaud

Passerelle des Trois Pays (or, in German, he Dreiländerbrücke) is a bridge that lies within a few hundred metres of three different European countries: France, Germany and witzerland. It crosses the Rhine between Rhein (Germany). designed by the FrancoThe bridge was designed by the FrancoAustrian architect Dietmar Feichtinger in ast, sociation with the consulting firm Leonhardt,
Andrä und Partner. The structure, built between 2006 and 2007, holds the world record for the longest pan of any bridge for pedestrians and cy-

L'Arca International described it as an arch of asymmetric cross-section that transmits all the strength and technical elegance of this bridge; on the southern side lies another more slender arch that widens the visual axis; the bridge supports were designed not to ck the view of the river banks.
The deck of the bridge, made of steel, is resistant to horizont The footbridge was the winner of the 2008 Deutsche Brückenbaupreis.

Main technical characteristics

Span 248 metres, total length 346 metres. Width 5.50 metres
Clearance 7.80 metres
Highest point of the arch 24.75 metres Materials: 1,012 tonnes of steel, 1,798 cubic metres of concrete, 805 metres of suspension cables

Angels Footbridge
(Passerelle des Anges)
\square Crosses the gorge of the river Hérault
$\square 2008$

- The first use in Europe o
fibre-reinforced பHPC
- Fitted with anti-vibration mass dampers
Text by Noël Richet
The construction of the Passerelle des Anges forms part of the development of a "Grand Site de France", listed as a UNESCO World Heritage Site, that includes the gorges of the river Hérault in the Languedoc-Roussillon region. The site, which also includes the me-
dieval village of Saint-Guilhem-le-Désert, covers an area of 10,000 hectares and in cludes five communes: Aniane, Montpeyroux, Puéchabon, Saint-Guilhem-le-Désert and Saint-Jean-de-Fos. The site provides multiple resources in remarkable landscapes and is the subject of multiple protections and recognitions. Annual attendance is estimated at between 650,000 and 700,000 visitors, with An integral part of the proposed development the footbridge provides pedestrians with safe a the nearby eleventh-century Pont du Diable (Devil's Bridge), a protected historical monument. It spans a natural gap 70 metres wide and 10 metres deep.
The footbridge is 72 metres long, 1.80 metres wide and 1.80 metres deep, with a deck slab thickness of 4 centimetres and a weight of 144 tonnes. It uses fibre-reinforced Ultra High Performance Concrete UHPC) and follows the Sherbrooke Pedestrian Bridge in Quebec, Canada and the Peace Bridge in Seoul, South Korea to become the first structure in Europe to use this new technology. The footbridge Romanesque Devil's Bridge (eleventh century) and the nearby road bridge (early twentieth century). It is the fifth bridge on the site.
In structural terms it consists of two parallel isostatic T-beams, which also act as the railings. The material used for the bridge, Ductal® UHPC by Lafarge, was especially chosen in order to provide an elegant solution to all technical and environmental requirements.
The entire structure was prefabricated in the workshop. The footbridge is assembled from fifteen 4.6 -metre segments, each weighing about 10 tonnes, prefabricated from a single mould. Each segment comprises the two beam sections and three tie members. The segments were then transported and as span-to-rise ratio of 38 to 1) required the use of mass dampers to limit vibrations. Studies, prefabrica-pan-to-rise ratio of 38 to 1) required the use of mass dampers to limit vibrations. Studies, prefabricaone month for site preparation, one week for installation and adjustment, one week for dismantling - in other words less than two months on site and less than two months for all operations.
Commissioned by the Communauté de Communes Vallée de l'Hérault, the footbridge was de signed by the architect Rudy Ricciotti and built by the contractors Freyssinet and Bonna Sabla

France

Nanterre Harbour Footbridge
(Hauts-de-Seine department)
[Passerelle du Port de Nanterre]
■ Nanterre

- 2010

Bridge built in recreation area

- Total structural steel weight

125 tonnes

Text by Jean-Paul Teyssandie

The Passerelle du Port de Nanterre spans the channel giving access to Nanterre harbour from the Seine river. Built between 2009 and 2010, it provides continuity to the footpath along the bank of the Seine.
It was designed by the French architect Alain Spielmann in association with the structural design rm Ingérop.
The footbridge consists of a metal bowstring arch from which an S-shaped deck is suspended between two concrete towers containing elevators.
The slenderness of the arch and the deck, associated with the robustness of the concrete towers, produces an elegant sculpture rising above the surrounding flat landscape. The curved shape of the deck provides a belvedere over the river and creates the feeling of a recreation area.
Main technical characteristics
The arch, 65 metres long and 15 metres high, is embedded at its extremities in two concrete blocks. It is formed of two metal tubes of a diameter of 610 millimetres
The deck is composed of two metal box girders linked by cross-beams suspended from the arch and upporting the wooden planking of the walkway. It also incorporates a metal tube acting as a tie-rod for the arch

France

[Ardèche departmentig

[Passerelle Saint-Clain]

- Annonay

- 2011

Glued laminated timber structure
Hinges in galvanised steel
ext by Bernard Raspaud

The Passerelle Saint-Clair, completed in 2011, spans the D820 route départementale. It was built as part of the development of acess to the town of Annonay, 50 kilometres uth of Lyon.
Wood has been used in the manufacture of paper in Annonay since the eighteenth cen$\mathrm{B}+\mathrm{M}$ Architecture, wished to recall this tradition by choosing a glued laminated timber (glulam) structure
The footbridge consists of a deck 40.30 metres long and two glulam arch ribs 28.24 metres wide and with a rise of 3.75 metres. The deck of the bridge is a reinforced conribbed steel trough. The thickness of the arch ribs ranges from 1.05 metres at the supports to 0.65 metres at the crown.
Radiating fan-shaped braces connect the arch and deck. These braces are made of reconstituted welded profiles and are coated with solid wood
The glulam arch ribs are supported by renforced concrete abutments through galvaised steel hinges.
Construction of the bridge involved assembling two half-bridges each forming a halfpan, and then joining the two half-bridges ogether

Georgia

Georgian Footbridges

in the Past

Bridges have played an important role in Georgia since the origin of human society. A review of histori-
cal materials and notable surviving examples presents cal materials and notable surviving examples present bridges at different stages of Georgia's history. Bridge building has represented a significant aspect of engneering activity in Georgia since time immemorial. Th expertise of
the master bridge builders of the past has survived to the present day. A number of ancient Georgian stone bridges are still standing, although not all of them are
in perfect condition. They are silent witnesses to the in perfect condition. They are silent witnesses to the
history of Georgian bridge building and a confirmation of the high level of technical expertise of their builders. The historian of King David IV, known as David the Builder (1084-1125), writes that King David built many bridges and paved roads.
An attractive single-span stone arch bridge stands on the river Tedzami near the old Rkoni monaster
(Kaspi district). This bridge is widest point. Another beautiful single-span stometres north-eas of Sukhumi. This bridge has been described in detail by many travellers and is considered a masterpiece of medieval bridge building. The bridge is built of stone with courses of flat Georgian bricks held in place by lime mortar The deck of the bridge is up to 4.7 metre
wide and the distance between the supports is 13.3 me wide and the distance between the supports is $13.3 \mathrm{me}-$
tres. The crown of the semicircular arch stands 8.4 metres above the river, while the supports reach a height of 2.5 metres above the level of the water. The arch thick ness ranges from 0.5 to 0.6 metres.

Georgia

Mtskheta - the ancient capital of Georgia

Georgia

Pompey's Bridge

-Mtskheta

- Fourth to third century BC
-Today partially submerged
- Part of the famous Silk Road
- Once had two defence towers

Pompey's Bridge stands on the river Mtkvari (Kura) in Mtskheta, the ancient capital of Georgia. It is partially submerged in the waters of a man-made lake. Although the present bridge is commonly eferred to as Pompey's Bridge both by the local population and in historical documents, a bridge stood on this site well before 65 BC , when the Roman commander Gnaeus Pompeius Magnus built a new bridge here. The origins of the first bridge are believed to date back to the fourth or third century BC. In ancient times the old Georgian capital of Mtskheta lay at an important crossroads of internationa trade routes. Many historians mention these routes, among them Strabo, Pliny, Appian and Cassius Dio
The most famous road to cross ancient Georgia and pass through Mtskheta was the Silk Road which began in China and crossed Georgia in the direction of the Black Sea and the Mediterranean. The road appears on the map of the ancient world drawn by the Roman geographer Castorius.
In the year 65 BC the bridge and the whole Mtskheta region became a battlefield in the war between Artag, king of Kartli (modern-day Georgia), and the Roman army commanded by Pompey
In the fifth century AD the bridge was rebuilt by King Vakhtang Gorgasali. Its length was increased 120 metres.
In the eighteenth century we find references to the bridge in the writings of the naturalist and ex lorer Johann Anton Güldenstädt. He described the bridge and the two defence towers, as well as the

In 1927 the bridge was submerged when the river was dammed to create a reservoir for the ZemoAvchaly hydroelectric power station. From time to time it appears above the surface, depending on the water level.

Georgia

Anaklia Footbridge

- Anaklia

1 January 2012
Europe's longest timber bridge
Cable-stayed bridge, total length 505 metres
Glulam wooden structure
Assembled using the patented Hess limitless joint
Text by: Markus Golinski
Ill photos: Hess Timber, Germany

The original conceptual design of the footbridge envisaged a bold suspension bridge design made of teel and with a length of approximately 552 metres. In this design, the biggest span, of approximately 317 metres, would have been located in central section of the bridge. This design, however, by far ex
eeded the planned budget. The search therefore began for an alternative solution.
Eventually a cheaper solution involving timber was decided upon as an alternative to the steel struc partners, created a timber construction solution in cooperation with the German company Hess Timber Before the design was finally approved by Georgian president Mikheil Saakashvili, several versions and
uggestions had been worked out.
The final design was a multiple span system consisting of two haunched end spans of 36 metres each ix standard spans measuring 48 metres and a cable-stayed section consisting of the largest spans of espectively, 64 and 84 metres. The total length of the bridge is 505 metres, which makes it Europe' ongest timber bridge.
The cross-section of the bridge reveals a spatial timber frame construction consisting of two trussed Ters which are laterally inclined to 45 degrees as well as a horizontal panel construction consistin
 plate and dowel joints.

Georgia

Originally it was planned to cover the entire timber frame structure with chestnut cladding. During assembly, however, the client was impressed by the timber frame conruction and it was decided to clad the gluam elements with transparent polycarbonate plates so as to keep them visible.
Hess Timber decided to transport an entire carpenter's workshop from Germany to Georgia in order to ensure the smooth realisation of the pre-assembly process and the necessary preliminary work. Assembly was carried out by German carpenters and Georgian support workers.
Assembly of the bridge: where possible, the timber frames (produced on site) and steel parts (produced in Germany) were pre-assembled on the ground and/or on the dam raised at the assembly site. Owing to the site's speial position (right beside the sea, on the river Inguri), the assembly work that took place in ected by flooding storm tides and violent torms.

Project data:
wner: Georgia
General Contractor: CRP, Tbilisi, Georgia Timber frame construction
Timber, Kleinheubach G
Design: Leonhardt, Andrä \& Partner, Stutt
gart, Germany
Timber frame structural engineering calculations: Fast \& Epp, Darmstadt, Germany Planning of sealing details: HSW-Ingenieure, Bad Oeynhausen, Germany nieure, Bad Oeynhausen, Germany
Structural engineering calculations for cables, pre-tensioning and assembly: Redaelli, Ital
Lighting design: Lunalicht, Karlsruhe Germany
Structural engineering calculations and manufacture of neoprene bearings: ALGA (Freyssinet Group), Milan, Italy

Georgia

The Eridge of Peace

Thilis

■6May2010

- Curved steel tubular truss struc ture covered with glass plates ■ Special illumination and light effects - Opened by the Georgian

Text by: Gorazd Humar
Rext by: Gorazd Humar
All photos: Gorazd Humar
he Bridge of Peace - the name of this architecturally interesting bridge in the centre of the Geor gian capital Tbilisi represents a communication that "celebrates life and peace between people". These are the words of Philippe Marionaud, the French lighting designer responsible for the bridge's special ighting effects. And indeed - the bridge is a wonderful sight not only during the day but also at nigh hen thousands of LED lights create a colourful and constantly changing spectacle.
These lighting effects also include the deck of the bridge, where LEDs are embedded in protective lass railings. The lights display a bissage that reners the nearby Narikala Fortress, which is impres ,
The bridge was designed by the Italian architect Michele de Lucchi, who was also the designer of some important modern public buildings in the vicinity. The elements of the steel bridge structure were produced in Italy and assembled on site. The bridge, which spans 150 metres over the river Mtkvai Kura), links Tbilisi's old town to a new modern park on the left bank. The bridge has a very particula hape that is somewhat reminiscent of a sea creature. This effect was achieved by a special roof conruction covered with glass plates.
an lan already established as one of Tbilisi's most impor eorgia.

Client: Old City Rehabilitation and Development Fund
Designer: Michele de Lucchi / Structural design: Favero \& Milan Ingegneria Srl Illumination designer: Philippe Marionaud
Illumination made by: Dutch Primo Exposures and RENA Electronica

Germany

Chain Bridge
Nuremberg, Bavaria

- 1824, restaurated in 2010
noldest surviving iron suspension bridge in continental Europe - Length 68 metres, width 2 metres Bridge over the old arm of the river Pegnitz

Text: C. Ahrens

The Kettensteg was built in 1824 by Konrad Georg Kuppler. It is the oldest iron suspension bridge in continental Europe. The chains and suspension rods of the Kettensteg still exist in their original state but ceased to serve their function when a supporting structure was installed in 1931. The name "Chain Bridge" derives from the system of chains, each three metres in length, from which the bridg suspended via pylons at either end
The bridge was provisionally restored in 1930. The start of the Second World War prevented its complete demolition. It continued to serve its function as a "temporary" bridge for more than six dec-
ades, until it was closed for safety reasons in 2009 . The restoration of the bridge, financed by the city of Nuremburg, began in 2010. On 22 December 2010 the bridge reopened, having been restored almost to its original state. Since suspension bridges are affected strongly by vibrations, the bridge was stabilised by means of a wooden structure integrated into the footway
Today the bridge enjoys protected status as part of the country's technical heritage and forms part of Nuremberg's "historic mile"
The bridge has a famous predecessor, which was painted by the great painter Albrecht Dürer
Design: Konrad Georg Kuppler / Planning: Dr. Kreutz + Partner, Nuremberg

Germany

Photo: Fobert Bock@

Neuschwanstein Castle

\square Near Neuschwanstein Castle,

Bavaria

- 1866, later renovated
- Built 90 metres above the gorge
- No falsework was used during

Text: C. Ahrens

The Marienbrücke (also known as the Pöllatbrücke) is located in the village of Schwangau, not far from the town of Füssen in Bavaria. The bridge spans the gorge of the Pöllat stream at a height of about 90 metres. Named after Marie of Prussia, the wife of Maximilian II of Bavaria, the bridge offers a wonderful view of the famous castle of Neuschwanstein.
The original wooden bridge, built in 1845, was designed to allow riders to cross the gorge. In 1866 on the orders of King Ludwig II, it was replaced by a delicate iron structure built in the Gustav urg workshops of Maschinenbau-Gesellschaft Nürnberg Klett \& Co. (a predecessor of the present-day C SE). Tion of the bridge took langeer Heinrich Gotffried Gerber
alves of the bridge, anchored in the rock on either side of the time, a brand-new technique: the two meet in the middle, thus avoiding the need for falsework to the gorge, were cantilevered outwards to Although the bridge has undergone several renovations, parts of it are still original.

Germany

Three Countries Bridge
Bridge over the Rhine between Weil am Rhein [Baden-Würtemberg, Germany, neard and Huningu, Sw
-2005-2006
Steel arch bridge with one
main span, length of the bridge 248 metres, width 5 metres

- Longest span: 229.4 metres - a record span length for arch footbridges

Text: Deutscher Brïckenbaupreis 2008

With its record-breaking span, this bridge is a sym bol of modern bridge building and a popular touris attraction. It is well integrated into its surrounding thanks to its unusually flat arch and "invisible" abut ments
The plan of the bridge is asymmetrical and the arch is extremely flat, with a height of just 24 metres The plan of the bridge is asymmetrical and the arch is extremely flat, with a height of just 24 metres orces can be read take the place of the usual massive abutments and allow a smooth transition into the ver bank area
Innovative design solutions were used for details such as lighting, handrails, access steps and ramps.
Design: Wolfgang Strobel, Dietmar Feichtinger
Client: Town of Weil am Rhein in cooperation with the Communauté de Communes des Trois Frontière

Germany

Harbour Footbridge

Sassnitz,
 Mecklenburg-Vorpommern

May 2006-July 2007
A balcony over the sea
Very light and transparent bridge structure

Text: Deutscher Brïckenbaupreis 2010

This new footbridge functions as a "balcony over the sea", connecting the harbour of Sassnitz to the town. It has an extremely slender profile with a height difference of 22 metres and combines form and function in a very convincing manner. The bridge is a sin-gle-ring beam suspended from eccentric cables and connected to an approach ramp. The bridge is light and transparent, with the result hat the view is not obstructed at any point.
The bridge was designed and built by schlaich, Bergermann \& Partner of Stuttgart and was the winner of the 2010 Deutscher Brückenbaupreis.
Construction data:
otal length: 243 metres
Span: 119 metres
Ramp: 124 metre
Width: 3 metres
Height difference: 22 metres
Height of mast: 43 me
Weight of bridge: 320 tonne

Dragon Tail Bridge

Gera and Ronneburg, Thuringia

- 2007

Wooden Stressed Ribbon Bridge
One of the longest and most innovative wooden bridges in Germany

Text: Deutscher Brückenbaupreis 2008

The bridge was built for the 2007 Bundesgartenschau (federal horticultural show) which was held in Thuringia. It was the main attraction at the show and is today an important part of the Thüringer Städtekette, a popuar long-distance cycling route.
The bridge is one the longest and most innovative wooden bridges in Germany - and
indeed the world. It has won various prizes thanks to its attractively undulating deck and eye-catching piers. Its remarkable shape makes the bridge a poetic part of the terraced landscape, offering fantastic views over it. The stressed ribbon is just 50 cm thick but has to withstand tensile forces of around 800 tonnes and is anchored at the ends of the changing the width, the specific form of the ribbon helps damp high torsional vibrations. The ribbon itself is protected against corrosion by the use of wood. The handrail is also made of wood, which helped keep the costs of the bridge down.
Cost: € 1.7 million
Cost: $€ 1.7$ million han 52 metres each
Width: 2.5-3.8 metres
Height above ground: 25 metres
Client: BUGA Gera und Ronneburg 2007 mbH, Thuringia!
Planning and design: Richard J. Dietrich Desien Office for Engineering Architecture Munich/Traunstein

Germany

FIöha Bridge

FFIöha, Saxony

- 2010
-Crosses arailway and main road
■ Semi-integral steel deck bridge
Length 110.60 metres, 3 spans
- Longest span 53.50 metres

Text: Deutscher Brïchenbaupreis 2012

The Flöha Bridge, also known as the "Blue Wave", crosses a busy main road and a small railway in he town of Flöha, Saxony and connects the town centre to a new district. Spatial constraints and rela tively big height differences resulted in an S -shaped design.
The three-span bridge, supported by two piers, is an undulating semi-integral structure incorporat ng haunched beams. It is well integrated into the surrounding area
The steel deck is anchored at the ends because forces caued by temperature fluctuations are mainly arried by the radial movements of the S -shaped structure. Thus the bridge is slender and does not The "Blaue Welle" bridge won the $\mathbf{2 0 1 2}$ Deutscher Brückenbaupreis in the footbridges category in recognition of the skilful engineering solutions employed and the economically optimised construction.
Client: DEGES GmbH, Berlin on behalf of the Free State of Saxony
促
Design and execution: Frank Ehrlicher, Gregor Gebert, Schüßler-Plan Ingenieurgesellschaft mbH

Germany

The elegant pedestrian bridge across the Rhine-Herne Canal is a part of the EMSCHERKUNST 2010 project. Designed by the artist Tobias Rehberger, the bridge is a colourful ribbon wrapped in a light, swinging spiral that connects two existing parks. The lightness of the design is achieved through he minimalist structural design of the bridge. Two steel ribbons made of high-strength steel connect oo inclined supports across the canal. The resulting tension force is transferred into the abutments via he outer vertical tension rods. The walkway consists of pre-cast concrete plates bolted to the stressed combined with the colourful rhythmisation of the concrete and coating, amplifies the dynamic expe rience of the bridge. Railings made of steel and cable meshes effectively add to the damping of this animated bridge.

Owner: Emschergenossenschaft / Design: Schlaich B Contractors: ARGE Stahlbau Raulf. IHT Bochum
Cooperation: Bauplan GmbH Wagner + Partner, Gelsenkirchen; Madako, Oberhausen

Germany

Erba-Steg Footbridge

- Bamberg, Bavaria

- 2012
- Length 60 metres, main span

48 metres, height in the middle

- Very light and elegant footbridge
-Winner of the 2014 Deutscher
Brückenbaupreis
Text: Deutscher Brickenbaupreis 2014

This bridge in the UNESCO World Heritage city of Bamberg, Bavaria, has a curious, if short, history It originally served as a temporary replacement bridge during the reconstruction of Bamberg's Kettenbrücke (Chain Bridge), which lasted two years.
In 2012 the city of Bamberg hosted the Landesgartenschau and needed a slender bridge that would fit into the context of a garden.
Both these requirements had to be fulfilled by this one bridge, which is now known as the Erba-Steg footbridge over the smaller left arm of the river Regnitz, connecting the island of Erba to the city. ary. This would normally requin Bridge over the Main-Donau Canal, a span of 60 metres was neces ever, the bridge had to have a very small height and had to fit neatly into the garden setting.
For this second use, the bridge was cut into two pieces. The two sections were lifted into their respective places in the garden and welded together to form a three-span bridge with a main span of 48 metres. The shorter end spans made it possible to give the bridge an extremely slender profile of jus 137 , a figure that pushes the limits of technical possibilities. The bridge sets new standards of light hess, gracefulness and elegance.

Design: Johann Grad (\dagger 2013), Matthias Dietz / Client: City of Bamberg

Great Britain

Postbridge

- Devon
- 13th century
-The deck slabs weigh upt
8 tonnes each
- Protected status since 1967

Text by Brian Duguid

The oldest surviving footbridges in the United Kingdom include "clapper bridges", a simple form of bridge constructed from massive stone slabs supported by stone masonry piers. The most famous ex amples include the Tarr Steps in Somerset, a 55 -metre bridge of 17 spans that is believed to date from around 1100; and Postbridge in Devon, a three-span bridge dating from the thirteenth century.
The deck slabs at Postbridge are reported to weigh up to 8 tonnes each. These bridges still rank as ignificant engineering achievements given the limited means available at the time of construction. The Postbridge is recognised for its historic significance and has been listed as a protected historical monument since 1967.

Great Britain

Few historic timber footbridges have survived. The Mathematical Bridge, which spans 12 metres across the river Cam in the university town of Cambridge, originally dates from 1749. The current bridge is actually a reconstruction to the same design, the bridge having been completely rebuilt in 866 and 1905.
The design, by William Etheridge, uses straight timbers arranged radially and tangentially to a circular arc, giving rise to the bridge's nickname. It has been suggested that this represents a highly ef ficient use of the timber, and it has also been used for the timber centring for a number of masonry arch
bridges. However, there is little evidence to support this supposition, and many of the timbers in the bridge are likely to carry very little load
Although the Mathematical Bridge in Cambridge is well known, there is an essentially identical, albeit smaller, bridge of the same type at Iffley Lock in Oxford, built in 1924.

Great Britain

Kirkton of Clenisla Eridge

- Angus
- 1824
-The earliest surviving
The eariiest surviving stayed
suspension bridge in the பK
- Very slender bridge structure

The rod stays are 15 mm in diameter

Text by Brian Duguid

This metal footbridge at Kirkton of Glenisla in Scotland, which has a span of 19 metres, is the earliest surviving stayed suspension bridge in the United Kingdom, and possibl in Europe
It was built in 1824 by the blacksmith John
Justice, roughly eight y Justice, roughly eight years after a series of
other stayed bridges at Galashiels, Dryburg and Kings Meadows, none of which have survived. Justice built a number of other bridge of similar design, and the surviving rod-stayed highway bridge at Haughs of Drimmie may even predate the Kirkton of Glenisla bridge by a year.
remarkable for thenisla footbridge remain remarkable for the slenderness of all its ele-
ments, a feature shared by other Justice de signs. Four rod stays of approximately 15 millimetres in diameter connect the bridge deck to the very thin pylons at either end of the deck. The deck itself consists mainly of one flat iron bar at each edge, from which a serie of cross-ties support the deck planking. and deformed, but its survival at all seems lit tle short of a miracle.

Great Britain
 resulting in a very

Great Britain

Faery Bridge

- Dunblane

- 1911
- Asignificant example
pioneering structural design - Spanning 28 metres over the

Text by Brian Duguid river

A number of innovative and significant reinforced concrete bridges were built in the United King dom in the twentieth century The most famous example is possibly Ove Arup's Kingsgate Bridge, built as the bridge at Swanscombe Cutting in Kent, which recalls the designs of the famous Swiss engineer Robert Maillart.
Much earlier, a bridge was built in 1911 in Dunblane, which although not the most beautiful of its time, was remarkable in its form. Spanning 28 metres, it was designed and built by Considere and Part ners, and may take its name "Faery" Bridge from a corruption of the term "ferro-concrete". The bridge is a deck-stiffened arch, where a thin arch element is stabilised by a stiffer deck beam, a form of con-
truction often attributed to Robert Maillart, who used it in bridges such as the superb Töss Footbridge.
However, Dunblane's Faery Bridge predates the Töss design by roughly two decades, and was als decade ahead of Maillart's other deck-stiffened arch bridges, built in the 1920s. It is therefore a sig nificant example of pioneering structural design.

Lockmeadow Footbridge

Kent

1999
Length 80 metres, main span
45 metres
Unusual twin-masted
arrangement Tox by Birn Dusuid
The 1990s saw an explosion of exciting contemporary footbridge design throughout the United Kingdom. Many of the bridges built were the product of high-profile bridge design competitions, often bringdge engineering design.
The Lockmeadow Footbridge at Maidstone in Kent resulted from all these criteria: a collaboration The Lockmeadow Footbridge at Maidstone in Kent resulted from all these criteria: a collaboration of a design competition held by the local council. It was completed in 1999 .
The bridge is 80 metres long, with a main span of 45 metres, and has an unusual twin-masted ar angement which reduces the overall mast height required. The bridge deck, which is only 300 mil limetres thick, is supported by stays from the skeletal steel masts. The bridge incorporates a number of innovations. The footway deck uses aluminium extrusions, locked together by stainless steel prestressing bars. The balustrades consist of custom-made fibre einforced plastic posts supporting a stainless steel handrail and wire panels.
The bridge is a highly modern intrusion in a historic setting, but every effort has been made to mini mise the visual impact of its various components.

Great Britain

	Sackler Crossing
	- London
	-2004-2006
	フロ-metre footbridge over a small lake
Text by Brian Duguid	Minimalist approach to architecture

There are two contemporary footbridges in London's Kew Gardens, each very different from the other. One is an aerial walkway, threaded between the treetops. The other, the Sackler Crossing, crosses small lake, and links two footpath
The bridge, designed by John Pawson with Buro Happold, is 70 metres long and crosses the lake in a sinuous S-curve. The structure is a steel frame supported on steel piles, but the cey visible features of the bridge are the series of granite sleepers forming the deck and the 990 bronze posts forming The lead designer, John Pawson, is renowned for his minimalist approach to architecture, but the bridge offers a sensuous rather than a minimalist experience

Great Britain

Built in 2001 to carry a local footpath 47 metres across a busy road, Halgavor Bridge successfully
narries attractive visual design to state-of-the-art engineering.
The bridge was designed by Wilkinson Eyre and Flint \& Neill. It is a suspension bridge with shor steel pylons inclined away from the roadway. The main suspension cables consist of galvanised stee while the hanger cables and parapets are of stainless steel. Timber panels at the base of the parapet acilitate the use of the bridge by horses, by helping to hide the trafic fiom The bridge deck consists mainly of glass-reinforced plastic (GRP),
combining pultruded edge sec ions with sandwich plate decking, and GRP plates and diaphragms. The material is expected to be largely maintenance-free. A number of other fibre-reinforced plastic footbridges have been built in the United Kingdom in recent years, but very few have managed to combine technology with the elegance of the Halgavor design.

Great Britain

Fisherman's Bridge
Cumbria
■ 2009
Simple weathering steel box
girder
15-metre bridge mainly used by
anglers
When struck by a metal ban
musical notes are sounded

This tiny, 15 -metre footbridge on private land in the Cumbrian Lake District is used only by the occasional angler to cross the River Duddon. It was designed by Honey Archicts with Price \& Myers engineers.
The bridge was built for an extremely low weathering steel box girder, triangular in both cross-section and elevation. This is supported
on small concrete piers at each end, to raise it above the river flood leve
The bridge parapets are a series of simple steel rods of varying length. When struck by a metal bar, hese resonate with the box girder and a series of musical notes are sounded.

Great Britain

Castleford Eridge

- Yorkshire

■2008
131 metres long, 4 metres wide

- Hardwood decking
- Dffers an attractive view over the river

Opened in 2008, this footbridge was built both to improve pedestrian connections and to try and en courage economic development in the small town of Castleford. Designed by McDowell and Benedetti, Alan Baxter Associates, and Tony Gee and Partners, it is 131 metres long and 4 metres wide.
The bridge crosses the river Aire in a sweeping S-shaped curve, immediately downstream of a weir The bridge deck contains twin hollow steel box girders, one of which rises above deck level to provide a base for seating. The box girders are supported on steel legs arranged in V-shapes. The bridge decking and part of the parapets are made from hardwood. The bridge creates an attrac ive space from which to admire the river, while the blend of timber and steel elements is visually ver successful.

Great Britain

Forthside Bridge

Stirling
-2009
Very unusual bridge structure
Spans 113 metres above a
railway station
Glass panels as parapet

Text by Brian Duguid

Completed in 2009, this bridge is an unusual and adventurous development of the cable-stayed bridge type. It is 113 metres long and spans above Stirling railway station.
The bridge was designed by Gifford and Wilkinson Eyre and built by Nuttall. Each edge of the bridge is supported by an "inverted Fink truss", essentially a series of cantilevering cable-stay elenents. These decrease in height from one end of the bridge to the other, with the arrangement along ach edge being the reverse of the other The bridge deck consists of a sted
ected by intermediate plates. The bridge poque formed by two diamond-shaped edge girders conhe masts.
The bridge is a bold and dramatic contemporary design, and forms a landmark which can be seen from Stirling Castle, high above the town.

Greece

The ancient city of Eleutherna was located approximately 30 kilometres south-east of Rethymno Crete), in the foothills of Mount Ida, at about 380 metres above sea level. Eleutherna underwent great development during the late Classical and Hellenistic periods, as wel as during the later Roman and Christian periods.
As we know, ancient bridge technology progressed from the use of flat surfaces, through the use of on the arch with voussoirs Corbelling is found in prehistoric bridges and was widely used until the Hellenistic period, when The Greeks began using arches with voussoirs. The evidence suggests that the bridge dates from the Heliod.
The bridge sits on natural rock, part of which is incorporated into the support of the bridge. The bridge is 9.35 metres long. Its width ranges from 5.1 metres at its east end to 5.2 metres at its west end The width above the crown of the arch is 5.05 metres. The two sides of the bridge thus converge slightly, The bridge is built of unmortared large limestone blocks. The blocks vary in width from 0.5 to 1.5 3.95 metres wide. The feet of the bridge are of uneven height and the base of the triangular corbel arch is horizontal. The free height of the bridge ranges from 4 metres (south) to 4.2 metres (north). The height of the isosceles triangle formed by the sides of the arch (i.e. the rise) is 1.84 metres. The angle ormed by the base and sides of the same triangle are 43°, while that of the crown of the arch is $94{ }^{\circ}$

Palkida or Kalogeriko Eridge
\square Western Epirus, near the villages of Kipoi and Koukouli

■ 1814

- Stone bridge, total length
- Stone bridg
-Three spans of 12, 14 and
16 metres
- Perfectly integrated with the
landscape
Text by: Aris Chatzidakis

The Plakida or Kalogeriko Bridge is situated in Western Epirus, close to the villages of Kipoi and Koukouli, in the Central Zagori area. It was built in 1814 in order to link the banks of the river Vikos a branch of the Voidomatis, which is a tributary of the Aoös, one of the longest rivers in Greece). The tone bridge, which has a total length of 56 metres and is 3.15 metres wide, has three stone arche regular intervals. The bridge is particularly notable for the way it blends into the landscape. Its shape has led to comparisons with a crawling caterpillar.
The original bridge was wooden but it was later rebuilt in stone following a grant from Serafeim, he abbot of the Profitis Ilias monastery in the village of Vitsa. It was therefore named the Kalogeriko Bridge ($\kappa \alpha \lambda$ ó $\gamma \varepsilon \rho \circ \varsigma$, kalogeros $=$ monk in Greek). After the year 1865, according to an inscription, nderwent structural repairs financed by Alexis and Andreas Plakidas of Koukouli, and was therefor was renamed the Plakida Bridge
Bridges were usually named after the person or institution who financed their construction (rich Benefactors, endowments such as the Ottoman vakifs, Turkish officers, ecclesiastics and so on). In some who had covered the cos were attributed to the same stone bridge, since they referred to the people were built using funds cost of repairs, when needed. Bridges were also named after villages, when they
The stone bridges that are found in the mountainous regions of Greece, particularly in Epirus, ena The stone bridges that are found in the mountainous regions of Greece, particulary in Epirus, enaeenth and nineteenth centuries: the Balkans, Austria (mainly Vienna), Turkey and Egypt. Bridges wer sential to the area's economic livelihood.
Most of the bridges in Epirus were built of schist stone, while a mixture of lime, crushed tiles, water pumice stone and dried grass were added to the binding mortar in order to make it stronger and more esistant. Construction of bridges started from both ends, with the master builders working gradually in such a way that the weight of the whole structure would be transferred to the supports. The abutment and central piers had to be bedded on stable ground, so the construction of stone bridges mostly took and central piers had to be bedded on stable ground, so the construction of stone bridges mostly took
place in summertime, to take advantage of favourable weather conditions. A well-constructed scaffold ing consisting of wooden beams was used to prepare the formed arches and removed after building was complete.
Stone bridges, like most structures of the period (religious buildings, public buildings, domestic ar-
 who moved from village to another and from one region to another. Those responsible for building bridges were known as кıотрои入ŋ́ $\delta \varepsilon \varsigma$, kioproulides (köprü=bridge in Turkish), but they also built othe heir young apprentices.

Alkianos Bridge

Chania, Crete

- 1908

The largest stone bridge in Crete
Total length 85 metres, width
6 metres
Designed using the graphic statics method Text by: Aris Chatzidakis

This bridge near the village of Alikianos in he Chania region is the largest stone bridge in Crete. It has three clear spans of 20 metres each, a total length of 85 metres and a width of 6 metres. The bridge is still in use and its sillage. The.
e was built in 1908 by the public works service of the autonomous Cretan State. It was designed by state engineers using the scientific knowledge and engineering manuals of the day. The chief designer is known to have studied at the polytechnic of Louvain in Belgium. Graphic statics methods of structurThe bridge structure is of cut stone, while the foundations are of concrete. Iron fastenings are used in places. The arches are flattened, with a span of 20 metres and a rise of 7.5 metres.

Greece

Simas Eridge

- Rethymno
- 1910
- 3 arches with 10-metre spans

■ Built using local limestone

- Designed by the Italian engineer Figari

Text by: Aris Chatzidakis

The bridge is located on an old country road about 10 km south of the town of Rethymno and spans a mall gorge. It has three semicircular arches each with a 10 -metre span, a width of 4 metres and a height of 20 metres at the two central piers. The cross-section of the base of the central pier measures 3×8 metres. The bridge was built in 1910 by the autonomous Cretan State authorities. It takes its name from a contractor nicknamed Simas, in recognition of the successful execution of this complex construction project. The bridge was designed by the ftalian engineer Figari, who held the post of chief engineer in vised by state engineers. The design of the bridge is a very common one in the engineering manuals of hat time and was also used for aqueduct bridges and railway bridges. The bridge is still in use today, allowing one-way traffic to pass in alternating directions, and is the only route connecting the town of Rethymno to the Amari region.

Greece

Harp Eridge

- Athens
-2003-2004
- Asymmetric cable-stayec
footbridge
- Height of pylon: 50 metres

Built as part of the Athens metro infrastructure

- Shape resembles a harp

For the 2004 Olympic Games in Athens, the architect Santiago Calatrava applied his architectural and engineering talent to produce impressive structures not only for the Olympic athletics complex, bu also for an impressive footbridge commonly known as the Harp Bridge, which was built as part of the thens metro infrastructure.
The shape of the bridge resembles a harp inspired by the ancient Greek monuments and sculpture of the Classical era. Located near the Katechaki metro station, the footbridge makes it easier for metro Thers to cross Mesogeion Avenue
The bridge is made of steel and consists of a single curved pylon 50 metres high from which 14 high
 over the avenue.
What makes the
What makes the bridge unique is the arrangement of its back span. In an asymmetric cable-stayed bridge, where the main span is longer than the back span, the back span cables are generally anchored to the ground to provide the necessary stability. In most such bridges, the back span cables are angle so as to provide a horizontal force that helps the bridge's pylon resist the horizontal pull from the main san cables.
On the Harp Bridge, however, the back span cables are vertical and offer no resistance to the side ways pull from the main span. Instead, that pull is absorbed through the curvature of the pylon as
The decking is formed by short timber planks, all neatly aligned rather than staggered. These are upported by steel ribs and the whole deck is cross-braced to provide the necessary stiffness. The foot bridge provides an attractive way for pedestrians to cross a busy junction and is already considered one he city of Athens.
The bridge was built by the Athens-based contractor METKA.

Hungary

Sárvár, the Castle Gate Bridge

- Sárvár

■ 1810

- 11 arches
- Length 61 metres

Text by G. Szöllöss
 Surce: "Hájaink" Budapest, 200

Alcsút Arboretum Bridge

Alcsút

1820
Stands in the first English
landscape garden in Hungary

Established in 1820 by Archduke Joseph, the Alcsát Ad Established in 1820 by Archduke Joseph, the Alcsút Arboretum was the first English landscape garden in Hungary. As Palatine of Hungary, Joseph was the first of the Habsburgs to settle in the Kingdom dynasty.
Today the garden covers more than 40 acres and is home to a large number of rare plants. It is popular with strollers and nature lovers. The garden surrounding the Archduke's castle was among the firs of its kind in the Habsburg Empire and is notable for the richness and variety of its rare plants.
Archduke Joseph successfully domesticated around 300 plants but all that remains of his once maAestic castle is a façade with a neoclassical portico. Designed by Mihály Pollack, the castle was among he largest neoclassical buildings in Hungary. The garden itself was designed by Carl Tost, a master ardener from Schönbrunn Palace in Vienna.
One wing of the castle had a stable block attached to it. This was later converted into a neo-Romanesque chapel designed by Ferenc Storno. The chapel still stands in its original form. The orangery in esque chapel designed by Ferenc Storno. The chapel still stands in its original form. The orangery in uins. Some of the other structures created for the arboretum are still standing, notably the footbridge While both the designer and the builder are unknown, this bridge has survived to the present day in it original form, complete with ashlar parapets and the "J" monogram of Archduke Joseph at either end.

The first written reference to the castle dates from 1327, when it was the property of Charles I of Hungary. In 1390 King Sigismund, the future Holy Roman Emperor, gave it to a trusted member of his court's inner circle, János Kanizsai, Archbishop of Esztergom. Later it became part of the estates of
Baron Tamás Nádasdy. By the end of the fifteenth century the Kanizsai family had built it into a fortified Baron Tamas Nadasdy. By the end of the fifteenth century the Kanizsai family had built it into a fortified During the sixteenth century, as was the custom at the time, access to the castle was via a wooden drawbridge.
The military importance of the castle faded over time and its later owners made significant changes to the original form of the medieval castle. The most notable changes were made in the early nineteenth century by members of the House of Este, the Dukes of Modena. They filled in the moats and modernised the castle buildings in the neoclassical style. It was during this reconstruction that the eleven-arch bridge leading to the castle gate was built. The bridge is 61 metres long and 5.8 metres wide (including the castle museum commemorates the construction of the bridge.
Since the castle has always been in use and inhabited, it has remained in perfect condition, unlike the majority of castles within the borders of Hungary.

Designer: Unknown / Contractor: Unknown

Hungary

Wudapest City Park
 Wünsch Bridge
 Budapest
 ■ 1896
 Reinforced concrete arch bridge
 -Built for the first underground
 - Hungenen monn

Text by G. Szöllớss,
Source: "Hadjaink" 2007

The designer, concrete engineer and entrepreneur Robert Wiinsch launched the construction of the The designer, concrete engineer and entrepreneur Robert Wunsch launched the construction of the
first underground railway system in Europe on 13 August 1884. The intention was for the grand open ng to take place during the 1896 Millennium Festival. The 3.7 kilometre undergound 1896
The original terminus of the Millennium Underground Railway was at Széchenyi Bath. Since thi erminus was above ground, the train left its underground section near Budapest Zoo, which made necessary to build a footbridge over the railway. Although it has lost its original function, the bridge is till standing as a monument (the hooks that held the overhead electrical cables can still be seen on the walls of the bridge)
The monolithic reinforced concrete arch bridge - along with all the reinforced concrete structures of he underground railway - were based on Robert Wünsch's patented technique. The use of rigid beam tructures represented a major breakthrough in the early days of reinforced concrete construction Robert Wünsch was an important promoter of this system. His solution, developed and patented in he late 1880 s, was to treat the bottom surface of a reinforced concrete structure like an arch and to use einforcement in both faces. The reinforcement in the lower face follows the shape of the arch, while the einforcement in the upper face is horizontal.
The bridge has a span of 10.7 metres and a total width of 2.6 metres. The pedestrian walkway is 2 metres wide. Access to the bridge on the Zoo side is via a single straight stairway, while access on th City Park side is via two stairways set at right angles to the bridge. The stairways are also supported by Park side contains a round concrete plaque commemorating the construction of the bridge. The Millenium Underground Railway was extended by a further two stations in 1973. During this process part of the original railroad cutting was covered over, and thus the bridge lost its function. It has however, been preserved as a monument to the Hungarian pioneers of reinforced concrete construction.
Design: Robert Wünsch
Contractor: Robert Wuinseh

Hungary

Zielinski Footbridge

Balatonföldvár

- 1905

BHult in reinforced concrete using
the Hennebique system
-Still in perfect condition

Text by G. Szóllósss
Source: "Hidjaink" Budapest, 2007

Szilárd Zielinski was the first president of the Hungarian Chamber of Engineers and one of the mos important early promoters of reinforced concrete as a construction material. The significance of his role in popularising the Hennebique system of reinforcement is undoubted.
He was responsible for an unprecedented amount of innovative construction in many different field of engineering. He was also involved in the design and construction of the first reinforced concrete ater tower in Hungary, still in service in Szeged today
leading to the west pier at Balatonföldvár was built in section reinforced concrete pier. The end sed concrete beam bridge, where each support is a square the total lengle spans measure 18 metres and the middle spare he total length of the bridge is 102 metres. In structural terms the bridge consists of one longitudina beam (cross section $35 \times 40 \mathrm{~cm}$) supporting a reinforced concrete slab (thickness 14 cm , width 195 cm) Reinforced concrete posts approximately 1 metre high support the original, quite beautiful wrought iro ailings.
There has been no need to renovate any part of the structure, since even after more than a hundred years the bridge is still in perfect condition.

Pál Vásárhelyi Bridge

Györ
1969
The finst of its kind in Hungary
Demolished before 2010

Text by G. Szöllössy,
Source: "Hidjaink" Budapest, 2007

Up until the end of the nineteenth century, inbound traffic from Little Schütt Island (Szigetköz) to Győr was handled by ferries across the Danube. The first wooden bridge was built in 1888 using thick red pine piers and piles. The "ten-legged bridge" (as it was known) was in use for 56 years, until Ger man troops demolished it and built a new wooden bridge with significantly greater load-bearing capac ity. This new bridge, however, was blown up during the troops' retreat.
The Pal Vasarhelyi Bridge (commonly referred to as the Small Elizabeth Bridge) was a single-pylo footbridge, the first of its kind in Hungary. A steel frame with a total length of 101 metres was divided
into three sections with spans of 25,60 and 15 metres on four reinforced concrete supports. The welded steel pylon consisted of two vertical posts and upper and lower cross-girders. The "harp" consisted of wo parallel pairs of suspension cables manufactured by the Hungarian Cable Manufacturing Company rom material left over from the construction of the Elizabeth Bridge in Budapest, hence the name by which the bridge is commonly referred to. The bridge, which was 2.5 metres wide and weighed 90 onnes, was supported by reinforced concrete piers. Spanning the Moson-Danube, it connected the Révfalu and Sziget districts of Györ. It was opened to the public on 16 August 1969.
An interesting episode in the bridge's history was that due to vibrations the structural frequency needed to be fine-tuned. The problem was solved by adding an additional layer of asphalt to the deck. Since the bridge was only suitable for pedestrians, there was constant discussion about constructin bridge that could also be used by vehicular traffic. When the necessary funding became available, the footbridge was demolished and its successor, the Ányos Jedlik Bridge, was opened to traffic in 2010.

Hungary

- Salgótarján
- 2005
- Steel Structure of the Year
award in 2005
Height c
railway

Hungary

Archaeopark covered
wooden bridge

Polgár

2007

Main span 34 metres
Three-hinged arch Text by G. Szöllössy
Source: "Hidjaink" Budapest, 200

This tied bowstring arch bridge with its slender tilted segmented arches and minimalist structura olutions is a very good example of the possibilities offered by steel structures. The bridge received the Steel Structure of the Year" award in 2005
The planned future development of the railway line imposed height constraints on the 36-metre span, while the particular conditions of the foundations also had to be taken into consideration during the design and construction of this bridge.
The bridge itself was manufactured at the facilities of the Hungarian state railway company (MÁV).
 ace. Rather than loading the bridge sections onto a strile, where they were assembled and lifted int Tace. Raher toing

Designer: Gábor Pál (Speciálterv Co.)
Contractor: MÁV Hídépító Co. in 2005

Gábor Medved, senior bridge engineer at Hungary's national motorway company, promoted the conGabor Medved, senior bridge engineer at Hungary's national motorway company, promoted the conLajos Szabó, this bridge pays homage to the great variety of covered wooden bridges that can be found in Transylvania.
Built between 2005 and 2006, it was opened to the public on the occasion of the grand opening of the Archaeopark on 1 May 2007. It can be found at the Polgar junction of the M3 motorway, where it span Route 35 and connects the Archaeopark to the Hortobagy National Park. Structurally the footbridge i three-hinged arch with a span of 34 metres and a radius of 27.5 metres.

Hungary

A new bridge for cyclists and pedestrians over the river Tisza in Hungary was opened to traffic in
 ocome an emblematic work of att for the city. As well as he design of the brige itself, he design area on the left bank in order to make the bridge fully accessible to pedestrians, cyclists and disabled users. The design competition was won by a team consisting of bridge consultants Pont-Terv and archiects ADU. The winning concept was a slender, elegant, splayed arch structure, which was intended to combine a dramatic visual impact with good functionality and economic construction.
The steel arch bridge has a main span of 120 metres composed of two tubular arches splayed outwards at 60° from the horizontal and a spatial truss deck girder suspended by tie-rods. The deck onsists of a steel grid covered with composite planks of wood and resin, which is a maintenance-fre material. The glass panels spaced regularly along the centre line give variety to the wide homogeneous surface
The LED lighting consists of a dotted line of lamps on the outer side of the arches, and light beam or illuminating the inner side. The illumination of the deck is provided by LED lights embedded in he handrails.
Since dynamic behaviour is a key issue in the case of slender pedestrian bridges, in-depth aerody namic studies were carried out and four tuned mass dampers were incorporated into the deck in order o reduce pedestrian-related vibrations.
Erection on site was carried out using two auxiliary supports in the river bed. Since its inauguration the bridge has become very popular in Szolnok, and serves as a venue for various events in the city.

Main technical characteristics

Main span: 120 m
Length: 186 m (main steel river bridge)
Total length: 320 m (including RC approach bridges)
Width: 5 m
tructural steel: 380 t
Design: Pont-Terv Zrt/ ADU Architects Construction: KÖZGEE Zrt

Liffey Bridge - Ha'penny Eridge
■ublin
$\square 1816$
Cast inon arch spanning
42 metres
\square Restored in 2002
Heritage award in 2002

The earliest known iron bridge in Ireland, he Liffey Bridge, was erected in 1816 for pedestrian traffic to connect Merchants Arch on the south quays of the River Liffey with Liffey Street Lower leading from the north quays.
The bridge is a single span cast-iron arch with an elliptical profile and consists of three parallel arched ribs spanning 42 metres bea rise of 3.6 metres (The span increases to a rise of 3.6 metres (The span increases to
about 43 metres at deck level). Each arch rib consists of six lengths of cast-iron bars of cruciform section. These are connected together at each rib joint to form two tiers of rectangular openings with chamfered surround, the depth of the opening decreasing towards the crown. The ribs are stiffened by the deck and by diagonal and normal bracing to form a truss in
the plane of the intrados. The transverse cross members are of hollow circular section with a bolt passing through, and act as spacers to provide lateral stability. Cast corbels on the outside ribs carry a flat plate that supports the parapet railings.
The Liffey Bridge was cast at the Abraham Darby III foundry at Coalbroookdale 002. The Liffey Bridge won the Heritage Award in 2002.

Italy

SOME THOUGHTS ABOUT

 FOOTBRIDGESEnzo Siviero
The footbridge as a symbol of Being
Over the last two decades, the subject of the footbridge has assumed the characteristics of excellenc a worldwide level. Beginning with the solid, emotionally engaging works of Jörg Schlaich, great en ineer, to whom the 'laurea honoris' in Architecture was awarded at the IUAV of Venice, to the various "authors of bridges" who have been able to direct design back towards a kind of innovation which is sometimes ground breaking in nature, defining within it new and diverse rules, even if one does not
always fully share their views. Just think of Santiago Calatrava, so unique on the world scene, enough to induce me to paraphrase B.C. and A.C. from Before Christ and After Christ to Before Calatrava and Afer Calatrava... Actually, this change of paradigm, which has by now become commonplace, is turnin out to be of great worth in terms of "humanitas". Building a footbridge means connecting people with each other and to themselves. It means making the way for people to walk on air, as it were, to reach others in whom they perhaps see a little bit of themselves. It means creating peace, friendship and love n a few words, seeing oneself once again as part of the great "human family". In this way, we are able o look beyond others' diversity, that we may simply not understand, overcoming an atavistic gephylerms of "enantiodromia" Thus people will be able to identify themselves again in their own action of "subject", which is part of the "whole"
A footbridge becomes a true point of accumulation able to attract for itself. So, not simply walking across it to get to the other side, but doing so for the pleasure of feeling part of it, making it ones own, lmost "wearing it"! The relationship between subject and object tends to be reversed. The bridges tha lives. The bridge that speaks. The bridge that attracts you. The bridge that makes you fall in love. Coninuous emotions created by the interaction of symbol and metaphor in a metaphysical way
of living that goes far beyond he simple action of crossing a bridge. New urban landscapes ppear, perceived directly and indirectly. New cultural dimensions emerge and become visible to all. Mental attitudes evolve toward that which is positive. Beauty will educate of Pope Francis. So this kind of footbridge where the Vitruvian riad FIRMITAS UTILITAS
AND VENUSTAS finds its synthesis with special emphasis on beauty, will be able to rebuild the world within us, in all of us, as oneness in creation. Many contractors have not yet understood this in all it depth and, with inexplicable cultural blindness, are not able to grasp the exceptional added worth, in social terms, of building something "beautiful" which means going far beyond building something hat connotes the way of planning of some engineers, who satisfied with their scientific technicalities, which they well know how to conjugate in terms of FIRMITAS AND UTILITAS, are able to expres little or nothing in terms of VENUSTAS. They thus end up abdicating the historically acknowledged ole of 'PONTEFICI', in its original meaning of 'bridge makers' to Architects. Well, in Italy (but not only) there are many praised exceptions, which act as catalytic examples of care taken by contractor

ltaly

Luca Guido

An Italian way to Engineering?
The projects selected for this book shouldn't deceive the reader: a few quality works are not evidence of widespread project culture, neither can we say that they sum up a wide range of contributions to the highlight the general emptiness and decay that surround them and all the opportunities that have been missed. f the seventies. It was a good period of time because of the rebuilding that had to be done, and then the economic boom, so there were great pportunities to create works which ere structurally challenging and oo experiment new approaches and
building technologies. The work and economic conditions of those years can never be repeated, the same goes for the liveliness of the scientific and cultural scene of the time.
In 2006, the prestigious magazine Casabella gave this title to one of its issues " The good old times of Italian ostalgia, the difference in quality
 nostalgia, the difference in quality
between the current scene and the
projects of the leading figures of the time such as Nervi, Morandi and Musmeci.
But what has happened more recently in Italy? What have the heirs of those great masters produced? There have been historical-critical publications and analyses by scholars such as Tullia Iori, Sergio Poretti, Valerio Paolo Mosco, all looking back on past experiences, but when it comes to actual con truction it is harder to find that widespread knowledge and the ability to create a great number of work the highest quality that characterised the second half of the last century
To tell the truth the 1990s didn’t only see the death of the leading Italian engineers, but also a change in infrastructural investments and planning strategies.
Both tendering regulations and technical building rules today do not allow for the experiments that were possible up to a few decades ago.
The latest trends sanction "an under-design style", "routine knowledge", denounced by the principal engineering projects that have been carried out: there is the tendency to build professionally correct works which are sometimes technically challenging and expensive, but which are basically impersona hen it comes to design and their place in the landscape, be it urban or otherwise.
What has caused the establishment of a merely functional way of designing has been a change in the mere consultants, with no particular contact with the contractors' administration. As a consequence of his, engineering companies, large and small, and so called general contractors have sprung up. Thes are interested in constructing the work mainly for the economic advantages of the contract, and are little inclined to linger over structural experimentation or aesthetic disquisitions
The truth is that the market responds to needs created by rules: the biggest concern apparent in he regulations is not the quality of the project but simply its inexpensiveness, without realising that a prory, of scientific and artistic knowledge and only as a consequence the carrying out of professional o

The fact that big designing structures are so impersonal and soulless reflects the impersonal attitude of contractors who stand aloof from the problems of the project and designing, confirming and favoring the belief that designing 'protagonism' should be avoided
It is an attitude induced by the way regulations have evolved and sloth caused by inability on the part
of the political classes to take on a real role of responsibility (including that of being a contractor who interested concretely in constructing quality public works
Another contributing factor is that is that research into the industrialisation of the building sector has created standardisation and prototypes rather than the possibility of diversification of the building process and of the final result.
The industrialisation = standardised elements equation, warmly supported in the past by many deperhaps naïve, especially if we include process automatisms in the equation. On the contrary the new perhaps naive, especially if we incluce process automatism in the equation. On the contrary the new
frontier of the discipline of construction and architecture is in the modern parametric designing techniques and robotic construction. We are talking about new ways of imagining projects, ways that are well defined by the professional services offered by internationally renowned companies such as Balnond Studio or Gehry Technologies. These are realities that are to some extent misunderstood and not really known in Italy
The loss of authorship when it comes to constructed works has therefore shifted the interest of re searchers and has to some extent made it difficult to follow interpretative tools.
It is no coincidence that the main revolution in transportation engineering over the past twenty years is not the modern designing of a work of art but, more realistically, the Telepass system, that is the first large cale dynamic system of paying toll charges in the world, introduced by the 'Gruppo Autostrade' in 1990 Adding to all the above, the general lack of interest in creating projects has put the spotlight on the other side of team design of the new millennium: the designer as a global star.
Having painted the picture I must underline the fact that there have been pockets of resistance to these general tendencies. These are educated, capable professionals who bear witness to the fact that of Architecture of Venice, amid the general chaos, on many occasions has been able to direct the debate

towards a positive outcome thanks to Enzo Siviero who transformed the (ex) faculty of architecture into a didactic laboratory that focuses on the subject of bridges, besides being a reference point for designers such as Mario De Miranda, son of the bet ter known Fabrizio and Massimo Majowiecki. At the same time figures such as Walter Pichler, designer of the 'Ponte del Mare' sea bridge) of Pescara, have bise In any case the selection of
hould not induce its readers to works presented in this book about the state of Italian engineering and particularly about the effort put forth to design bridges, viaducts and footbridges. The last few decades are full of opportunities that weren' fully exploited, in which political trends were contradictory and the demands of the administrations wasted energy in scheme nfrastructures. Furthermore
hat have often ove endless red tape has generated problem self: noise barriers and landscape dreatating to the project it terminology of mitigation and compensation almost to denounce he fact that any work will inevitably ruin the landscape to the detriment of the territory
We must begin with the points discussed above to understand the inability on the part of legislators,
 ment and improvement of landscapes, creating new qualities
In other words legislative policy has been to deal with is Essentially what has been lacking is theoretical input, intelled perspective.
 ions and political projects.

taly

Michele Culatti
Italian footbridges: utilitas between design and landscape
Over the past few years, in Italy, interest in footbridges has grown, partly thanks to the starchitects hat have turned the spotlight onto the wider subject of bridges, and partly due to the greater sensitivit hat public administrations and designers have gained in virtue of the popularization of 'bridge culture' e have realised that footbridges are orks of art (so they are called in Italian radition of construction) and that becoming the landmark of a place can add character to the environment they are built in with relatively low costs.
Nevertheless, often the effect they pro-
uce is still that of alienation from the duce is still that of alienation from the
place they are built in, or at least the place as interpreted by Marc Augè in an anthropological sense (that is a historical, iden-tity-making, relational place), which is a definition to be taken as a necessary reference in order to comprehend the level of acceptance or rejection of space used by
 brought about by decisions made by engineers that coupled with the designers and contractors' desire o give character to the work, tend to focus attention on the footbridge itself, in its configuration as eeometrically defined object, and give less attention to the degree of connection that can be created, on various levels, with the urban context and landscape
But cities change: the demand on the part of the community to live in 'beauty', as opposed to the urban deterioration which is instead advancing, sheds light on the meaning of emerging issues such as urban redevelopment and regeneration that are trying to find solutions both to difficulties caused by reckless urbanisation and to the need of environmental, energy and economic sustainability. It's not just a question of public money. It is the need to take stock of what is going on in Italy that raises questions
today the answers to which are difficult to predict, Italian geography has to deal with different types of networks, infrastructural and virtual, and competition has shifted from the world of industry to appeals between cities.
Within this frame of reference, the role of the footbridge became pivotal becoming the interpreter, between design and landscape, of the modification of an area we make use of.
In fact, in these two disciplinary fields, design and landscape, we can find concepts related to the tudy of form, function and meaning that are present in many architectures that allow for interpretation from the scale of detail to a wider one, and through which sense is given to a place, especially in so far awareness increases that
We understand therefore that ideas relating to the concept of the footbridge must by all means have multidisciplinary and multi-objective approach, striving to meet local urban development and improvement needs whilst still taking into account humans' perceptive faculties
Thinking in these terms means giving dignity back to architecture according to the ancient Vitruvian parameters that still hold true today. Over the past forty years, firmitas (solidity) has been given great mportance in the process of building expansion that involved bridges, viaducts and footbridges while are in the era of utilitas (usefulness). The usefulness of a footbridge (as is the case for bridges) canno simply be considered as a way to link two land sides that clear an obstacle, but must be able to show its worth in the territory and to the community taking into account its social historical, economic, environ mental and anthropological context.
Today the conceptual category of usefulness must relate to users' needs and use behaviour peculia of design; it must be able to deal with new linguistic codes that refer to the landscape, understanding for

Italy

example the meaning of landscape quality or criticality, it must know how to build a landscape through its modification, alteration and, overcoming Italian regulations, its improvement; it must include more multi-informed pattern in its productive process (today BIM - Building Information Modeling hilosophy is gaining foothold, that from 2D and 3D moves to 4D in timing management, to 5D in cost management
ve senses.
The use of a footbridge then, is something complex and as such must deal with a number of issue rgonomic requiremample with what functions or new end uses it should connect; what functional and with, such as illumination that can be adjusted in intensity and colour, solar panels, remote control wi-fi systems to provide active communication with the users, nowadays immersed in AR (augmented reality) provided by the 3.0 Web; to what extent it should adapt to its surroundings by means of the tudy of consistency; to what extent it should be toned down, or hidden placing value on other surround ing elements or, conversely, to what extent should it be a monument, interpreting historical or
On this last point, it is interesting to note that what differentiates a footbridge from other bridges is not only its function - for pedestrians rather than for vehicles - but also how we perceive it.
We usually see a bridge from different directions but it tends to appeal to only one of our sense When it is used, links between bridge and land and vice versa are created, yet the foremost sense we use is sight. With a footbridge there is a change of state: from mostly visual perception there is a greate nvolvement of other senses like touch and hearing. The footbridge offers a rich range of perceptions with at least three overlapping types. What comes from sight when we cross the footbridge is to experiinside, with the weft of its structural elements, its construction details and at the same time if we turn ight round we see the outside like an uninterrupted scene
A second sense comes from the world of touch. We can stop and lean on the handrail, touch it, pereive how much heat it transmits depending on what it is made of or feel its vibrations.
Finally sound: just think of the rhythm of our steps which mingles with that of other pedestrians, the houting of people which merges with the rustling of the vegetation on the banks of a river or with the ometimes almost imperceptible or at times deafening noise of the water or of the traffic below. At times he tension of the cables or other parts of the structure can be heard creating a real sound landscape. Besides that, the footbridge guides its form it provides information, polarizing our attention. An arched footbridge can signal the start, the middle and the end of the journey. A cable-stayed bridge can be a reference point in the area. The posts of the parapet can beat time to the regularity the crossing. the crossing.
hade from the structural parts of the bridge onto its surface can establish wher people go in search of some slight sanctuary during the hottest part of the day in summer. The width of the footbridge to gether with the height of its surface provide the perspective depth of the crossing and dictate the distance between pedestrians
Use reshapes the landse conversely the interpretation of utilitas (usefulness) connotes the
 seat of an abundance of meanings. Still thinking of perception, this time from the outside, we can consider quantitative
much we perceive of a footbridge in terms of space due to the effect of light and shadow.
For most of the day it is in semi-darkness or in poor light that we can make out the design of the fram For most of the day it is in semi-darkness or in poor light that we can make out the design of the frame
or the structural architecture that supports a footbridge. Therefore, shadow is what gives the sense of

ltaly

depth and importance to the work, but also that which limits our perception of it. Shadow also helps emporarily carve out the other features of the surrounding area. It is this shadow that the bridge, if caught in direct sunlight, casts onto the surrounding area with enchanting or intrusive effects.
The footbridge therefore, as architecture to be crossed at low speed is a place that really appeals to parts which in their turn are then correlated with the user. It means creating layers of signs between more you understand how a place works, the better equipped you are to build something really useful, modulating the quality of that place
To do that, specific knowledge of bridge techniques is not enough , but rather a cultural, multidisciplinary approach is needed, one which knows how to examine the relationship between the work and it setting. The Scuola di Ponti di Venezia has been working in this direction and thanks to Enzo Siviero has over the last 25 years produced more than 600 theses on bridges to spread needed awareness planning that puts an ethical search for beauty even before an aesthetic one
Furthermore, Italy as we will see illustrated by some footbridges, has managed to bring out that creative drive which is able to create real connections with its location. Through masterly use of functional, have become symbols of whole areas, as occurred with the Ponte del Mare, the footbridge which is the symbol of the Abruzzo Region.

abrizia Zorzenon

Footbridges as landscape design
For almost thirty years now footbridge design has been acquiring the worth and importance which for long time has been characteristic of architectural works.
For most of the twentieth century , the quality of a bridge was judged only on the basis of its size and For most of the twentieth century, the quality of a bridge was judged only on the basis of its size and
length. This view gave footbridges such secondary importance that they were often reduced to simple structures with beams. However, at the turn of the new millennium, a radical change of thinking caused he footbridge to be rediscovered as a "vessel of metaphors"
Starting with authors like Calatrava, Mimram and Schlaich, at the beginning of the 1990s, an in creasing number of architects and new design engineers began to see the potential behind the desig of these structures so that in a short time a new generation of pedestrian bridges was born. So different rom what had gone before, these structures embody the cultural revolution that in little more than twenty years has managed to profoundly change not only their day to day use, but the actual image we have of them today, both in terms of form and importance. Today, the footbridge has changed from bein a simple, anonymous structure whose sole use is to clear an obstacle, to being just like any other work of rchitecture, something wich by its very form and presence contributes to the ladseape we live in andscape architecture which enables it to give form to new and unexpected experiences of life, to new and unexpected places for cultural Exchange and meeting.
The reasons for this unexpected transformation did not some fad. They can be found in the way that the great European cities have addressed the ecological, social and urban crises which they have been

facing for decades. On an ur ban level, one response to the problems started a long perio of design which, beginning with Bohigas' plan for Bar important urban re generation in Europe, starting with the re design and reorganizatio of roads and squares, in fact of all open and public space which are a substantial par of urban construction. These are plans whose aim could held desire to bring the city back to its original importance as a meeting place par excel ence, a place where, by interacting with others, the individual can find himself, his nature as a socia being and his integral part in a wider system called society. This is a feeling that the widespread use of cars has gradually worn away over the years.
Reconstructing a city starting with urban spaces means reconsidering its entire infrastructure in ays above and beyond purely financial and technical issues which until the 1970s had been the sole From here a new deci
ootbridge from a simple in philosophy emerged, which, in a few years, has managed to transform the Footbridges, which are no more out ef design into a real urban design or rather a landscape design. grated into the architecture of the landscape of which they are part. Bridges, which by their shape hel o reassemble that nebula of fragments, typical of the contemporary condition, and create a continuous low that twists and turns inside the urban fabric. Bridges which possess that regenerative potential present everywhere, which is conceived above all to be experienced and crossed by man. Footbridges potential to become places of warmth, of social interaction, or rather spaces which can rebuild that synergy between humans and their land that makes every space into a place to be lived.
A landscape design however, involves more. Crossing a footbridge is like crossing somewhere in slow motion. Its architecture, building materials and the details of its parapet create a friction that almo without our realizing it slows us down to a halt. It is right there, when we stop that we open our eyes and look around. Suddenly our attention is aroused. Like a sponge our senses absorb everything that surrounds us. Mind and body are realigned to the present and our perception of reality, usually superficial and volatile, returns to what it was originally, charged with meaning and full of feeling. The pedestrian
bridge thus brings us back to reality, makes us realize how beautiful our surroundings are and what nexcusable damage man's ignorance in the past has caused. Bridges encourage us to open up to the world, to live and rejoice in it and be in harmony with it, they encourage us to find ourselves again as part of everything.
What the works in this book have in common is all of that. They are footbridges that do not simply go ver obstacles or connect two opposite banks of a river. They are bridges that go well beyond that. They explain their nature fully by connecting, through their architecture, reality to more levels. They are bidges that even with simple shapes speak a higher language that elevates us to commune with beauty.

The Ponte Vecchio is one of the best-known symbols of Florence, a city famous for its art and muse ums. Florence is especially known for the great artists and architects who worked there, among them Leonardo da Vinci and Michelangelo
Florence stands on the two banks of the river Arno. The unpredictable character of this river has left a deep mark on Florence. The Arno is in fact known for its sudden spates and frequent floods, which have ever spared the city. In as recently as 1966, a flood devastated the city and caused irreparable damage Florence. The first bridges in the area of today's city were built in ancient Roman times. Various bridge tood here over the centuries and were constantly having to be repaired as a result of the damage caused when the level of the Arno rose.
It was not until 1345 that a more solid bridge was built: a masonry structure with three fairly shallow arches that formed the basis for the superstructure that would later be added to the bridge. In 1442 the city authorities ordered butchers with shops in the densely populated city centre to move onto the bridge This was mainly for reasons of hygiene and to get round the problem of the unpleasant smells from the bridge. ches to support the overhanging shops. The overall width of the bridge thus increased considerably. The bridge was given the final form we know today with the construction of a practical addition by the architect Giorgio Vasari. By order of Grand Duke Cosimo I de' Medici, whose family ruled Florence for centuries, Vasari built an elevated enclosed passageway, today known as the Vasari Corridor, along th ntire length of the bridge. This secret passageway was almost 1.5 kilometres long and enabled Cosimo to pass unmolested and unseen from the Palazzo Vecchio, the seat of government and administration, to ing residence in Palazo Piti. n nhe way he could cop ine ty
In 1593 Grand Duke Ferdinand I ordered the butcher's shops to be removed from the bridge, because of the increasingly intolerable stench beneath the Vasari Corridor. The bridge was now occupied by shops of a "nobler" nature, and the arrival of goldsmiths gave the bridge an entirely new image.
The biggest threat to the Ponte Vecchio came in August 1944, when the retreating German army ble up almost all the bridges in Florence, including the Ponte Vecchio's famous neighbour, the Santa Trinit in German officer who refused to permit its destruction.
Another interesting feature of the bridge is that its open central section offers views of both bank of the Arno: on one side towards the Uffizi Galleries and on the other, where the statue of the sculptor nd goldsmith Benvenuto Cellini stands, towards the Santa Trinita bridge. The Ponte Vecchio is still the busiest point in the city of Florence today

Few cities in the world are so closely identified with their main bridge as Bassano del Grappa, which is located roughly 50 kilometres north of Venice. Mention this wonderful little city at the foot of the Julian Alps to anyone in Italy and they will immediately think of its most famous attraction - the large overed wooden bridge that connects the two parts of the city on the river Brenta. The bridge has an xtremely chequered history and has been rebuil everal times over the centuries, having fallen victim The first records of a relatively sim
The first 1511, whit a relatively simple bridge on this site date from 1124 and 1209. A bridge stood away when the Brenta flooded. The abe by the French army. In 1567 the newly rebuilt bridge was swept rchitects, Andrea Palladio, to rebuild authorities then called upon one of the most important Venetian hat the bridge was to be covered by a woedridge. Palladio came up with a new design that specified al drawing from 1569 has been by a wooden roof. This design still survives today and Palladio's original drawing from 1569 has been consistently followed with every subsequent rebuilding of the bridge. The next time this happened was in 1748, when the Brenta, swollen by floodwater, utterly destroyed
Palladio's bridge. It was rebuilt by Bartolomeo Ferracina, who scrupulously followed Palladio's design.
The bridge was destroyed once again in 1813 during fighting with the French and was again rebuilt in
the bridge was destroyed once again in 1813 during fighting with the French and was again rebuilt the First World War. During the conflict the bridge was frequently crossed by Italy's Alpini regiments The bridge was destroyed for a third time on 17 February 1945, during some of the last fighting of he Second World War. It was rebuilt in 1947 using Palladio's plans and stood until 1966, when it wa once again swept away by the river Brenta. This time the rebuilding of the bridge included a number of necessary reinforcements. This is the bridge that still stands today, an unmistakable icon of Bassan
del Grappa.

Design proposal by Andrea Palladio

The Rialto Eridge

- Venice [Venezia]
- 1591

Probably the mostrecognisable footbridge in the world

Widest footbridge in the world
-Public competition held for its

Text by: Gorazd Humar

 All photos: Gorazd HumarThe Rialto Bridge is undoubtedly the king of Venice's bridges. It is an unmistakable icon of the beauiful lagoon city and at the same time the oldest of the four bridges that cross the Grand Canal, the city's main thoroughfare. It is 22.1 metres wide, making it the widest of Venice's 431 bridges. Another unique eature are the 24 little sh
The bridge has a rich and varied history, just like Venice itself. It was built in 1591, in the period of he city's greatest prosperity. Preparations for its construction took almost a century, beginning in 1503 when a design for a new bridge was drawn up after the previous wooden bridge was destroyed by fire. It was not until after 1550 that the plan to build a new bridge began to be taken more seriously. The city authorities held a public competition to choose a design. The committee responsible for the competition was presided over by the powerful and influential salt merchants' guild, who wanted new shops on the bridge from which to sell their salt. The public competition was one of the first in history for an importan he conditions laid down for the design of the new bridge was that the Doge's ceremonial galley must be able to pass under i
In 1588, after a long search for a suitable solution and numerous quarrels, construction of the new bridge was entrusted to the architect Antonio da Ponte, who designed a single-arch bridge to span the Grand Canal. The new bridge, built of white Istrian stone, was completed three years later. The biggest echnical challenge was represented by the foundations of the main arch, which was squeezed between he houses on either bank of the canal. Using specially designed foundations of considerable width rations supported by wooden piles. In 1591 the Rialto Bridge was pile
pened for business and a safe and broad route. The 24 stone-built shops placed on the bridge soon was thus created. Most importantly, with its single arch, the new bridge allowed boats to pass along the Grand Canal unimpeded. The Rialto Bridge is probably the most famous and most photographed bridg in the world

Atter the Rialto Bridge, the Bridge of Sighs is without a doubt the most photographed and most visited bridge in Venice. Not because of its size, since it is relatively small, but because of its position, its interesting design and th to be told about it The Bridge of Palace with Venice's once-notorious pris on the other side of the canal, from where few ever returned. It gets its name from the sighs and groans of the prisoners who crossed it on their way to the prison and caught their las glimpse of daylight as they passed over the bridge. Among those to cross the brigge on
their way to the cells was the famous adventurer and legendary lover Giacomo Casanova (1725-1798). The story of his miraculous es cape over the roof of the prison after just ove year of imprisonment is perhaps the most famous story connected with the bridge.
The bridge was built in 1602 on the orders of Marino Grimani, the 89th Doge of Venice, whose coat of rms adorns the bridge. The bridge, built of white Istrian limestone, is positioned quite high up between the two neighbouring buildings - the palace and the prison - because of the danger that prisoners migh lel and separate passageways pass through the bridge. In architectural terms, it is built in the baroque tyle. It was designed by the architect Antonio Contin. Because of the function it performed, the Bridge of Sighs is the only covered bridge in Venice and at the same time the only one not built just above the surface of the water but high up between two buildings.
Many writers have written about the bridge, among them Lord Byron and Mark Twain. The former is ven credited with giving the Bridge of Sighs its name.

解 Bridge of Sighs, was completed in 2011, and the bridge once again adorns Venice in all its glory.

Comacchio is a small town on the Adriatic coast not far from the cities of Venice and Ferrara. Ow ng to its numerous canals and bridges, it is sometimes known as Little Venice. This picturesque little town surrounded on almost all sides by water and marshes is also famous for a very special footbridge Commissioned by Cardinal Giovanni Battista Maria Pallotta in 1634, this bridge presented a ver nusual challenge to its builder, the architect Luca Danese. His task was to span five canals with single bridge while ensuring that boats could still pass along them freely, and at the same time to unite a bridge that in terms of its design and struc
 a bridge is perhaps unique in the world. Five set of steps give access from different directions to a bridge with an interesting arrangement of arches: a unique structure that has become not only the town's most important attraction but also the principal junction in the town centre
south side of the bridge two sets of steps lead up to the central section. These steps are topped by two towers. Passing under the towers, you come to the centre of the bridge, from where the bridge now branche into three completely separate directions, reached by three sets of interestingly de signed steps.
Most of the bridge is built of red brick while the central section is built of white stone transported here by ships that crossed the Adriatic from what is today the Croatian part of Istria.
The bridge attracts large numbers of visi tors, but it really comes into its own once year when the loodlighs are swithe on an, most prestigious fashion shows.

Footbridge over the Reno River (Passerella sul fiume Reno)

- Casalecchio di Reno
-2002-2004
-Steel suspended bridge
- A span with 98 metres

Wooden flooring

The cycle and pedestrian footbridge in Casalecchio di Reno, designed by Massimo Majowiecki, i characterised by a linear, sharp design mark. Stretching out between the two banks of the river, like large overturned arch, this piece of work settles into the hilly area that surrounds the river Reno. It creates a wonderful symbiosis between architecture and landscape. The structure is built within a support ing framework. The main features are the two cables, that have a span of 98 metres and a height of 15 metres. With their solidity, they precisely trace the outlines of the bridge, enhancing its lightness. The is supported by diagonal metal girders of variable span and linked to the supporting cables by tie rods. The structure also has two big A-shaped anchoring portals that, like entryways, invite pedestrians to walk across the bridge. The wooden flooring encourages people to take their time and enjoy the beauty hat surrounds them.
Client: Comune di Bologna / Designer: Massimo Majowiecki

Footbridge over The Po River [Passerella sul fiume Po]

\square Turin [Torino]

- 2004

Steel beam bridge

- Span of the bridge 100 metres
-The bridge abutments form two squares
- Meeting point above the water

Along the river Po in Turin, a slender, elegant footbridge designed by Antonio Capsoni was inaugurated in 2004. He had won the international competition that the city of Turin had tendered for the carrying out of this work. The bridge crosses the principal Italian river, creating a natural connection between the two banks of the Po and the districts that face each other on either side, in the context of a wider project of redevelopment of the landscape surrounding the river that flows through the city of
Turin. This project is called 'Turin, city of waters' and has amongst its aims that of enhancing the system of pedestrian and cycle routes that connect the densely populated urban areas with the two banks of the river in order to bring a piece of nature and beauty back to the city. For this reason, the elegant and at the same time systematic shape of the bridge is based on the urban morphology of the areas around the bridge which is characterised by an alternating series of narrower parts (roads and avenues) and wider ones (squares). These aspects of the city's arteries are reflected in the bridge's layout which widens out where the pylons are, creating areas where people can stop and maybe sit on one of the benches. In this way, the structure creates a natural extension of the road, over the river. To highlight this continuity are he bridge abutments that form two squares which create a geometrical unison between the roadway
and the route along the bank of the river. Finally, by interacting with the water, the bridge becomes a crossroads that originates from the intersection between the longitudinal direction of the road and the ransverse direction of the river. As it crosses the river the road widens out above the water transformin itself from a road into a square. By doing this it creates a reference point where you can stand and look at the panorama and also a place for social interaction, suspended above the water.
Client: Comune di Torino / Designer: Antonio Capsoni

Olympic Bridge

Turin [Torino]
-2005-2006
Cable-stayed steel arch bridge
Span of the bridge 400 metres Height of the arch 69 metres

This bridge, with its characteristic red arch, was built for the 2006 Winter Olympics in Turin. It is he work of Hugh Dutton, whose project was an integral part of the plan to build the city's new Olympic Village. Part of this project is the renovation of the historical 'Magazzini Generali', designed by Um erto Cuzzi in 1934, and the building of the new footbridge creates a pedestrian route to the ex Lingotto building, situated in front of the new village but beyond the railway line. The bridge's most characterthus organised in order to support the long, narrow path that leads from the Olympic area to the Ling8 shopping centre. The choice of colour, like the one chosen for the arch, reflects the desire to create a strong visual reference point within Turin's landscape and urban skyline, a clear sign that can be see rom very far away that has become not only the symbol of the Olympics but also of the future of this ity. Indeed, its structure, which is basic but full of meaning, was chosen to make this bridge into an con of strength and lightness. Its slim, slender figure remind us of the elegant sequence of parabolic rches characteristic of the architecture of the MOI (Olympic Village). This has further contributed to gans chosen for the event.

Client: Comune di Torino / Design: Hugh Dutton Associes / Project Manager: Hugh Dutton

Italy

Bridges as a sculpture in the space: this is how the designers define their work. These are the two new footbridges that cross the Talvera river completing the project for the new museum of modern and contemporary art in Bolzano. Designed by KVS Berlin, that in 2001 were awarded the contract by he 'Provincia Autonoma del Sud Tirolo', the new museum is located on the outskirts of the ancient city, along an ideal route that joins the historical centre with the quarters that are part of the building
expansion dating back the Mussolini's time. The two bridges were built using similar materials to the expansion dating back the Mussolinis's time. The two bridges were built using similar materials to the desire to recreate an immediate connection between art and the city. In contrast to the squared shape of the museum, the bridges were built using a combination of parallel and oscillating curves that interwine over the river capturing the attention of passersby. A playful approach of sculptural shapes that move freely in the landscape provoking a mix of curiosity and excitement in passersby that only a work of art is able to create. At night, a cold light that illuminates the structure close to the ground and is then refracted by the glass of the handrail contributes to the effect, adding dramatic power.

Client: Provincia Autonoma di Bolzano / Design: KSV Krüger Schuberth Vandreike - Berlin

Designed by the Progeest firm and inaugurated in June 2009, the Rari Nantes footbridge is one of the key elements of a recently promoted project by the Paduan municipality with the goal of facilitating the use of bicycles as the best means of getting around the city. The objective of the 'Padua by Bike' project is therefore to build a vast network of bicycle-pedestrian lanes which will be able to connect the exist ing roads within the historical centre quickly and safely with the quarters located outside the ancient city walls. Included in the 115 kilometres of road is the new lower desk arch footbridge designed by a point where the Bacchiglione river offers interesting opportunities in terms of services for the citizens. The design of the bridge draws inspiration from one of the most common 'inhabitants' of the river, the noorhen, a water bird similar to Galliformes. The entire conception of the work came from observing his animal and analysing its movements when hunting for the insects it feeds on. Regarding its geometry, the footbridge is characterised by an arch which is tilted by 22 degrees compared to the vertical and crowned on top by a bar shaped like a bird's beak that acts as a stabilizing element. With a total ength of 75 metres, the bridge has a cantilever type frame that gets gradually wider, until it reaches halfway across to enjoy the beautiful scenery from a vantage point, suspended between the two banks over the water.

Client: Comune di Padova / Designers: Lorenzo Attolico - Enzo Siviero

Footbridge over the A13 motorway
 - Dozza (Municipality of Bologna)
 -2006-2009
 - Steel arch bridge - Span of the bridge 100 metres ■ Bycicle-pedestrian bridge - The bridge st

All photos: courtesy of Studio Maiowiedi
Inaugurated in 2009 and designed by Massimo Majowiecki, this cycle-pedestrian bridge was born with the goal of repairing the damage caused by the A13 motorway (Padova-Bologna) that, through its layout, caused a huge tear in the urban fabric of Dozza. For this reason, the bridge was built with he aim of recreating physical and social continuity between these two parts of the country that were painfully cut off from each other by this new highway. The reconnection is therefore brought about by hat changed the history of the area. Two A-shaped metal structures rise up tilted away from their respective abutments to stand facing each other, above the motorway, at a point of maximum tension both statically and visually. From here, two rows of cables branch off radially to support the structure that is significantly narrower in the middle. The two facing curves that define the shape give traction to the structure that balances out the initial push produced by the struts.

Client: Comune di Bologna / Design: Massimo Majowiecki

Jutting out towards the Adriatic sea, Pescara is a city rich in contrasts: on the one side, the sea and mainly urban territory that face each other, on the other, the river with the same name, Pescara, that splits the urban fabric in two quarters which are distinct and diverse both from an architectural and from a social point of view. In this difference lies, the origin of the "Ponte del Mare" (Sea Bridge), coneived as an element which can facilitate the physical and cultural reconnection of two seemingly opposite realities, with a past which is rich in history and a future in constant growth. Designed by Walter Pichler, an architect from Bolzano, the work is the tangible expression of the desire to give unity back from this desire, two pathways that lift up from their respective banks as one to meet, ideally, in a place of physical and social reconciliation, suspended above the river. In fact, two rows of cables branch off from a central pier to support and balance the bridge's two separate lanes, the bicycle lane which is 4 metres wide and the pedestrian lane which is 3 metres wide, that near the two ends merge into a single 5 metres wide lane. In this way, the bridge recreates a sort of empty space in the air, rich in meaning that enclosed between the two curvilinear lanes gives the work the symbolic value of a monument pace and gateway to new cultural exchanges, like those recently developed by the countries that bor-

Client: Comune di Pescara / Designers: Walter Pichler - Mario De Miranda

Footbridge over the Adige River

- San Michele all'Adige
-2006-2011
- Steel arch bridge
- Span of the bridge 107 metres
- Double arched tubular structure

This elegant and rather dainty footbridge was inaugurated in September 2011 and connects the own of San Michele all'Adige with the suburb of Grumo, thus paving the way for two communities to become even more united and continue their cooperation both in creating areas suitable for cycling and in promoting tourism in Trentino which is such a rich, vibrant territory. This work is situated along a provincial cycle route that was initially built for recreational purposes but is now becoming increasingly mportant both for tourism and the economy of the area and also for the issue of sustainable mobility.
This crossing over the Adige was therefore built using a double arched tubular structure which is 2 metres high and crosses the river with a total span of over 107 metres. Two rows of 31 hangers each span out radially from the two arches converging towards the middle of the structure. The structure itself is 3.2 metres wide and has a floor made with wooden slats with led illumination built into the lower part of the parapet
Client: Provincia Autonoma di Trento / Design: Alfonso Dalla Torre / Team: Studio IGT, Marco Piccolroaz, Cesare Micheletti, Claudio Micheletti

Created by the ApsT firm, the Science Bridge is a "fleshless" 142 metres structure that attempts to ink two areas of the city of Rome that today are part of a large urban renewal project. The purpose of this project is to revitalise the ex industrial area of the Ostiense district. Large industrial plants lie in disuse and this place appears a real "gap" in the consolidated building fabric of the city. Designing a bridge in this place, therefore, meant repairing ties this area had with the rest of the surrounding distric wing up, as it were, the tear created by the fact that time has seemed to have goond to a halt here, because in these materials we can find proof of the past and this almost short-circuits our perception of the present directing it back towards the past. Reinforced concrete and COR-TEN steel was used to give shape to a minimal supporting structure that, as if it were hanging by a thread, bears witness to the ough treatment it was put through. Whilst the thread, a suspended cable, is also part of the structure along with the two supporting crutches on the banks of the river Tiber that materially face each other. As a kind of terrace on the river, the bridge is open not only to pedestrians and cyclists but also o shared activities and events, ends that justify its greater width of 10 metres and the presence of pedestrian part. For the first, cement paving was used, for the second Tek wood. In this way the bridge has gained the added worth of becoming a place to share with and meet new people, that is a place that can bring about a renaissance of the Gassmann Riviera

Client: Comune di Roma / Design: ApsT Architettura / Project Manager: Gianluca Androletti / Team: Maximiliano Pintore, Stefano Tonucci, Giorgo Monti, Mauro Minciotti
ltaly

Music Bridge
 (Ponte della Musica]

- Roma

-2008-2011
-Span 190 metres
22 metres wide
■ Arch steel structure supports
A piazza on the river

The international project competition tendered by the city of Rome was won by the English firm Buro Happold Engineering with Powell-Williams Architects, who went on to design this bridge. The building of this infrastructure is an important step forward when it comes to the mobility of the city of Rome in he Flaminio area, connecting Renzo Piano's Auditorium and the Maxxi designed by Zaha Hadid with he sports complex of the Foro Italico
The bridge is 190 metres long and 22 metres wide, with a structure which is divided into a central paved lane, for the use of ecological public transport, and two side lanes with wooden flooring. A de pressed arch steel structure supports the bridge. These arches lean outwards and rest on reinforced cement piers that contain the stairs that give access to the two banks of the river. Furthermore, from an urban point of view, the bridge has become almost a 'piazza' over the river, a place to walk and linger in along the way between the Lungotevere Flaminio and the Lungotevere Maresciallo Cadorna. It has thu become an important intersection within the new 'Parco della Musica e delle Arti' (Park of Music and the Arts) that will be built along the route that leads form the Maxxi to the Foro Italico.

Client: Comune di Roma / Design: Buro Happold, Powell-Williams Architects

Italy

This new mobile footbridge, inaugurated in July 2013, was part of the restoration of Mirabella Har bour and had been left out of the urban, social development of La Spezia for too long. It was the first step in building the new waterfront of the Ligurian city. This work represents a great opportunity to bring life and fun back to this place that overlooks the sea, encouraging the locals reclaim one of the most beautiful corners of La Spezia's gulf. The bridge has a length of 156 metres. As you walk across it, you can get a view of the city that was previously only visible on board boats and ferries. Its two pylons, that here. Anchored to the pylons are the cables that support on both sides the parts of the structure that connect the masts to their respective docks. Instead, at the centre of the bridge is the lock that can be opened with a total span of 8 metres.

Client: Autorità Portuale di La Spezia / Design: Exa Engineering Srl

Latvia

Footbridge over city canal

- Riga
-1892
-Brick aroh
-Main span 26 metres

This bridge is located in the most romantic part of Riga, close to the artificial hill made from th emains of the city's medieval walls. The bridge was erected in 1892 for pedestrian traffic. A singlespan brick arch bridge, it was designed by the engineer $\overline{\mathrm{A}}$. Agate. The arch is 26 metres long and 2.6 metres high. The width of the walkway is 3.66 metres. The bridge has steel railings and 4 lamp posts.
tts masonry supports are 1.2 metres thick and rest on 35 wooden piles.

Designer: Ā. Agate

Footbridge over the canal next to the Latvian
National Opera

- Riga
- 1900
- Steel truss arch bridge

The bridge is located in the centre of Riga. Its construction was proposed by Professor Timma in 900 and a competition was held to select a design. It was originally planned to place the bridge in such a way as to connect the National Opera and the University of Latvia by the shortest route. During the steel truss arch bridge is 20.52 metres long and 2.03 metres high. It is 3.60 metres wide and originally had a wooden deck structure supported by transverse I-beams.

Designer: Ivans Kropivjanskis

Latvia

Footbridge over the

river Ogre
Ogr

- 1966

Reinforced concrete arch bridge Main span 83 metres

This reinforced concrete footbridge over the scenic river Ogre connects two parts of the city of the same name. The bridge was built in 1966 in order to connect the centre of the city to the Pārogre dis trict, with its open-air events venue, summer cottages and new residential neighbourhood. The bridge 96.2 metres long and 3.5 metres wide. The reinforced concrete arch has a span of 83 metres and is 7.8 metres high, giving it a span-to-rise ratio of 10.63:1. The bridge deck structure is made of precast has become an important river crossing for both local residents and tourists.

Designer: V. Salcēvičs

This bridge is situated in the Gauja National Park and forms part of a tourist route in the ancien Gauja Valley. It was opened in 1979 and provides a scenic view of the Devil's Rock and the river. The bridge is a cable-stayed structure with steel deck girders and a wooden deck. Renovation was carried ut in 2008 and the wooden deck was replaced with a new one

Designers: J. Zavickis and A. Ādmine

Latvia
Latvia

Pedestrian overpass over Karlis Ulmanis Aven

Kārla Llmanis Avenue

\square Riga

- 2006
\square Total length 175 metres
-Main span 38 metres

Designers: SIA Inženierbūve, Raitis Lācis

This cable-stayed footbridge with a glued laminated timber deck is situated in Riga's business dis trict. The location is characterised by a high traffic intensity. Before construction, the area was divided by a six-lane avenue and virtually no means were provided for pedestrians and cyclists to cross it. The bridge was built in 2006. With its seven spans and approach ramps, the pedestrian overpass has a total length of 175 metres and a main span of 38 metres. The continuous glued laminated wooden with "A"-shaped tubular steel pylons. The wooden deck is attached to the steel pylons by four pairs of stays providing a proper configuration of anchorages and joints.

Cesis Castle Park Bridge

- Cesis

■ 2012
-Wooden bridge

Length: 9 metres
Width: 1.80 metres
Height of rails: 1.02 metre
Material: wood (larch) Project: Artūrs Lapiñš, Designer: Guntars Jansons

The Cesis Castle Park Bridge was built in 2012 following the discovery of the original plans draw up in 1862 by the famous eclectic architect Otto Dietze (Latvian: Oto Dīce, 1833-1890). The plan were stored in the Rare Books and Manuscripts department of Latvia's National Library.
the origeal bridge was built in ture with metal fastenings.
Tevers family. It was built according to the tenets of the Romantic when the castle belonged to the noble ing past Karlis Hill. During alterations to the castle park in the era as a crossing over the stream runhe peninsula in the lake and filled with water to create an island. The new Castle Park Bridge, built in 2012, stands very close to the original nineteenth-century location and serves as a crossing over th ditch to the island, where a romantic bower has been created.

Footbridge over Cesis Castle
Foot
Cesis
-2006
Wooden bridge structure

Built in 2006 as a part of the renovation of the Cesis Castle complex. Total length 38.5 metres. The bridge structure consists of wooden beams fastened together with steel bolts and secured by wooden cross-beams. The deck is 3 metres wide and consists of longitudinally placed planks. The railings are also of wood. The wooden piers stand on concrete foundations.

Designers: SIA Arhitektoniskās izpētes grupa, Artūrs Lapiṇš

Mitava footbridge over the
river Driksa

- Jelgava
- 2012

WWinner of 2012 Best
Engineering Structure award

Contractor: SIA Tilt
Project manager: Artioms Gridnev Project manager: Artjoms Gridnev
Designer: Project 3, Girts Skupelis Designer: Project S, Gite
Architect: Ivars Slivke

In July 2011 Jelgava city council contracted SIA Tilts to build a footbridge over the River Driksa River and create a whole new area of the city, including two pedestrian promenades, renovation of nearby streets, alterations to the landscape, etc,
A cable-stayed footbridge with a length of 150 metres and a main span of 75 metres was built over he river Driksa. The bridge has two 28 -metre pylons and 28 cables and was constructed from pre pleasing parapets and seats along the bridge. The project also included an arched road bridge ovens for boats, and a steel pontoon bridge located Driksa, a two-storey boat station with concrete pontoons for boats, and a steel pontoon bridge located urther along the Driksa.
The project included many architectural features such as specially designed lamp posts, bicycle The project included many architectural features such as specially designed lamp posts, bicycle this new city district
The streets were paved with concrete blocks in various colours - yellow, blue, red, white, grey, etc. All the nearby streets underwent renovation and communications were revised and updated
Alterations to the landscape included moving the canal connecting the Driksa and the Lielupe to llow the expansion of Post Island (Pasta sala). The ground level of the island was raised by approximately two metres and the riverbed was lowered so as to allow boats to navigate freely around the site Site engineering and temporary works were designed and managed by SIA Tilts. The project was completed in November 2012 and a beautiful opening ceremony was held on the eve of Latvian Inde pendence Day
The bridge, which has already become a Jegava landmark in its own right, stands next to a histori palace designed by Francesco Bartolomeo Rastrelli and built in 1738. The present-day development of palace designed by Francesco Bartolomeo Rastrelli and built in 1738 . The pi,
the city may be seen as a continuation of a process that began with Rastrelli.
Urban regenaration is now in full swing and is expected to bring new life to the area in the form of public events, cafés, restaurants and so on. All this will increase the number of tourists and benefit the ocal population.
The unique and complex design of this project afforded the contractor, SIA Tilts, plentiful opportuni ties to demonstrate its engineering and project management expertise. The bridge won the 2010 Bes Engineering Structure award.

Technical characteristics:

Length - 200 metres (152 -metre steel superstructure, 50 -metre concrete superstructure)
Width - 3.5 metres
Pylon height - 24 metres
Number of stays - 28

Lithuania

Lithuania

Three Maidens Eridge
■ Kaunas

- 1976
-Total length 388.5 metre
- Steel box girder
- Leading to Kaunas's recreation areas

This footbridge was built over the river Nemunas and the Vilnius-Kaunas railway in 1976 so that ocal residents could enjoy the pleasures offered by Panemune forest and the riverside area. The bridge is 388.5 metres long and 5 metres wide.

Trakai Castle Footbridge
Trakai
1977
Two bridges linked by an island 180 metres

Linking the castle and the shores Lake Cave
Two wooden footbridges
supported byreinforced concret
Beautiful picturesque landscape

Construction of Trakai Island Castle, which stands on an island in Lake Galvé, began in the second half of the fourteenth century. Contemporary sources also mention the bridge leading to the castle. The castle was the residence of Vytautas the Great, Grand Duke of Lithuania, until his death in 1430. Traka sland Castle is now a museum and the venue for a variety of cultural events. The current bridge was built in 1977 by the Vilnius Road Construction Board. The first part of the bridge, leading to the inter nediate island, is 72.1 metres long, while the second part, leading to the castle island, is 107.9 metre rete; the deck and railings are of wood. All the wooden elements were replaced with new ones in 1999.

Lithuania

Lithuania

Lake Širvena Bridge - this wooden pedestrian bridge is the longest footbridge in Lithuania and tands on an artificial lake. The bridge is in a regional park and connects the city of Biržai with Astrava Manor, located on the northern shore of the lake. The famous wooden bridge is 525 metres long and 245 metres wide. The bridge was officially opened in 1987 and was renovated in 2003

Daukantas Bridge

■ Kaunas

- 1988

Totallenath of the brid
51 metres
The pilot Jurgis Kairys has twice flown under the bridge

Simonas Daukantas bridge - a footbridge over the river Nemunas to Nemunas Island in the centre of Kaunas.
The architect of the bridge was Algimantas Sprindys, with Darius Žickis acting as structural engi eer. The construction manager was the civil engineer Alfonsas Meškinis. The bridge was built in 1988 nd is 151 metres long with a width of 5.5 metres
On 4 July 1996, to celebrate Lithuania's national day, the well-known pilot Jurgis Kairys performed an aerobatic manoeuvre by flying under the bridge (the height of the bridge structure above the surface the river is just 7 metres). On 2 September 2000 he flew under the bridge again, this time upside down in an SU-26 aircraft.

Lithuania

Footoridge to Kleboniškis
Forest

- Kaunas
- 2006
- Leads to the forestin Kleboniškis

Park
■Total length 76.7 metres

This arched footbridge with a suspended deck was built in Kaunas in 2006. The project manager was Gintaras Bajoras and the structural engineer was Arvydas Cibirka. The structure has a light, modern, graceful feel and allows residents to reach Kleboniškis Park without having to cross busy roads. The bridge is 76.7 metres long and 3 metres wide and has a height of 52 metres.

The bridge was designed by the architect Sariane in the centre of Zarasai. Kiaune and built in 2011 . The structure is 17 metres high and 34 metres wide. Thanks to its unusual shape, the bridge offers stunning views of Lake Zarasas and the city of Zarasai.

Malta

Fortifications and Stone
Footbridges of Valletta
Valletta
■ 16th-18th century
\square Access bridges to the walls of Valletta

- Part of the system of
fortifications

Text: Ruben Paul Borg \& George Cassar

The Maltese archipelago, with the main inhabited islands of Malta and Gozo, is strategically located in the centre of the Mediterranean Sea. Malta's position and role as a military stronghold can be traced back to prehistoric times. However, it was in more recent centuries that this value became considerably enhanced. When, in 1530 , the Order of St John took up the responsibility of protecting and administer ing the islands on behalf of the Kingdom of Spain, to which Malta belonged, the archipelago became at ne and the same time a fortress and a monastery. Between 1530 and 1798 Malta was gradually transisland of Gozo were fortified. The main enemies at this time were the Ottoman Turks and the Barbary corsairs. The former were feared for their declared mission to oust the Hospitallers and take over the archipelago as Sultan Suleiman had already done in Rhodes in 1522. The latter were dreaded for their

frequent raids on the islands, which had devastating effects on both the islanders and their property. It was therefore imperative that the islands became as impregnable as possible, and this is exactly what the Order set out to do. By 1798, the year in which the Hospitallers lost Malta to the Republican frces under the command of he future Emperor of France, Napoleon Bonaparte, Malta and Gozo ha eastal watchtowers, entrenchments, fortified towns and citadels, as well as the capital city of Vallett embraced within its fortified enceinte. S John first settled at the On their arrival the Knights of the Order of St John first settled at the Borgo, the small seaside town which thrived under the protection of a small and run-down castrum maris. This defensive structure would soon be turned into a strong fort called St Angelo - a name it has kept to this day. The Borgo (now Birgu) was on a peninsula in the majestic natural port of Malta, called the Grand Harbour, and thus was
very close to the Order's fleet which was anchored there. With time the Knights realised that Malta was very close to the Order's fleet which was anchored there. With time the Knights realised that Halta wa would return to its former island home of Rhodes, but this had been lost to the armies of the Turkish

sultan some years previously. This realisation was also a result of the Ottoman siege of 1565, which he Maltese call the Great Siege of Malta. With the Turkish armies defeated and the Knights emerging as the heroes of Europe, the victorious Grand Master Jean de Valette decided that this was the time to nake a statement to both the Order's brethren and to Europe in general. The Order was going to remain in Malta and to seal this connection a new city - their city and their "Convent" - was now going to be fortified city to be sited on a tongue of land - the Sciberras peninsula - jutting out between two natural ports. Its streets were designed on a grid pattern, which allowed the breeze to circulate in a country where hot weather was typical and acute
Priority was, however, given to the fortifications, as this city needed to be impregnable. The artillery ortifications with angled bastions joined together by curtain walls that were designed for this city were intended to ensure that it could withstand any attack both either land or sea. The first stone was laid i 566 and by 1571 the construction had advanced enough for the Order to officially move into the Humilissima Civitas, as the new city was also known. The land front was elaborate, comprising a series of
defensive structures which included two bastions with orillions and two demi-bastions, linked by strong curtain walls and pierced by a single gateway - Porta San Giorgio - which was accessed by means of a bridge. It also presented to an attacking force two cavaliers, counterguards, a ravelin, tenailles, a place d'armes, a ditch and other features. A truly robust front which was further protected and reinforced by he Floriana Lines in front of the city. Globigerina limestone and the
of he fortification structures. One feature which is evident in the Valletta fortification ensemble consists of a number of masonry
arched footbridges linking the main enceinte to some of the outworks. The purpose of such structures arched footbridges linking the main enceinte to some of the outworks. The purpose of such structure tem. At one point these bridges were criticised by the Order's Commissioner for Fortifications, Bali de Tigné, who felt that they were too high up. The bridges still stand today and to a large extent retain their original appearance

Victoria Lines Masonry
Bridges
-riage

19th century
Footbridges acted also as dams - Pierced by musketry loopholes

Text: Ruben Paul Borg \& George Cassar

In 1800, while much of Europe was engaged in a war against France, Malta ended up in the hand of the British, who gradually took it over while helping the insurgent Maltese population to drive the French occupying forces out of the island. In 1815 the islands were officially and unequivocally integrated into the British Empire. The new masters, knowing full well how essential this new colony wa or their military cause, at once saw to it that its defences would be strong and secure Such militar reoccupations continued
The British considered the islands to be one of the most important naval bases in the Empire. Their trategic importance increased with the opening of the Suez Canal, since Malta now became a port of call for ships on their way to India. Moreover, as the Mediterranean was a politically active and agitated

Malta

egion, the Maltese naval and military post acted as a strategic sentinel, monitoring the countries on its shores and those that showed interest in slipping into this maritime basin. To protect their property and ensure its impenetrability, the colonial administration first took over and strengthened all the These included many strong forts lining the coast of the main island of Malta. The primary aim fo the forts was to keep invading enemies out by deterring them from approaching the island. The defensive system adopted by the British followed similar lines to that established by the many experienced miliary engineers who had served the Order of St John. The British military authorities recognised that significant outlay was necessary in order to continue with the programme of fortification building that would further strengthen their prized Mediterranean colony. They succeeded in this aim by adding new ortifications according to the military needs and political circumstances that evolved during the 164 years of British rule
Just as had occurred during the domination of the Hospitallers, the defensive eye of the British occupiers fell on the natural geological fault that divides Malta in two and runs from Madliena in the of the 12 -kilometre Great Fault. The end result was a series of fortified positions linked together by continuous infantry line. These fortifications were originally known as the North-West Front but wer given the name the Victoria Lines on the occasion of the Diamond Jubilee of Queen Victoria in 1897 The purpose of the Victoria Lines was to provide an advanced line of defence to protect the southern part of Malta, including the harbour area. In this way any eventual landward invasion of Malta, which was expected to come from the northern, more desolate part of the island, could be blocked halfway by means of the defences constituting the Victoria Lines. This project began with a fort at Bingemma
in 1874. Two other forts, those of Mosta and Madliena soon followed. Other batteries and posts were later constructed, along with additional fortifications, until the whole system was officially abandoned in 1907, when it was decided to revert back to conducting the defence of Malta from its shores. The Victoria Lines are a fine example of Victorian military structures comprising a wealth of architectura

features and concepts, all intended to provide an efficient defence system. The lines were never tested, ince the dreaded invasion never materialised
Because the Victoria Lines span Malta from coast to coast, from east to west, they had to follow the whours of the island and thus ran over hills, across plains and down into valleys. The stonemasons This was especially the case with the so-called stop walls, which were constructed in the dry river val leys that cut through the geological fault and are known locally as Wied il-Faham, Wied Anğlu, Wied il-Ghasel and the Bingemma Gap. These walls also served as footbridges, linking one side of the valle o the other and following the defensive structure to the next gap. They would also act as dams in the valleys, especially after heavy rainfall. In order to relieve this obstruction to the flow of run-off water, arches or culverts were constructed within the stop walls. In terms of defence, however, such openings reated a weakness in the defensive line, since they facilitated penetration by the enemy in the event of attacking forces reaching that point of the valley, with predictable consequences for the defenders. einforce the defensive deterrent. To make the footbridges defensible, musketry loopholes were created on the side of the bridge facing the direction from which the enemy was expected to approach
Today one can still walk along the Wied il-Faham, Wied Anglu and Bingemma Gap footbridges, jus as the Victorian soldiers used to do. One of the footbridges, that of Wied il-Ghasel, did not pass the test of time as it was swept away during a severe storm in 1979, which only left the three lower arche tanding as a reminder of its hundred-year presence.

St Elmo Footbridge

Valletta

-2012

- Yarnetre span classic arched
truss
-The new bridge respects the historical context
-Designed to withstand sea storms

Text: Ruben Paul Borg \& George Cassar

Malta provided a secure base for the British fleet in the Mediterranean during the nineteenth and twentieth centuries. Grand Harbour, a natural port, incorporates a number of inlets which provide adequate shelter to naval vessels. However, it had one particular drawback: it was not an all-weather port due to its exposure to north and north-easterly winds. With the increasing strategic importance of Malta as a British naval base during the 1800 s - as a port of call for ships en route to India - the need was 1872 with a view to constructing a breakwater at its entrance. In February 1990, the British Admiralty hen commissioned civil engineers Messrs Coode, Son and Matthews to draw up plans to protect Grand Harbour.

Since Grand Harbour was exposed to the north-easterly Gregale wind, the engineer's brief was to render the entire harbour usable when the strong and stormy Gregale wind blew at its most furious, without impeding the circulation of water. The distance between the breakwater arms had to allow the argest warships to enter safely but at the same time protect the harbour against the north-easterly wind and torpedo attacks. The proposal included a 378-metre arm at Fort St Elmo, following a slighty a^{\prime} l-Imgerbeb (not constructed) and the levelling down of the rocky shore along the bastions to form wave trap. The Grand Harbour breakwater was constructed between 1902 and 1909, not only as means of protection against bad weather but also to provide a defensive barrier against a potential na val attack on Grand Harbour. The completed breakwater thus incorporated a wall offering protectio against north-easterly storms, a dog-leg steaming course and a boom defence against naval attack, with an enlarged anchorage for vessels within the harbour.
The breakwater arms consist of precast concrete blocks bonded together to form an almost vertical gravity barrier wall 11.4 metres fhick and up to 14 metres deep, designed to resist the powerful wave teel boom defences with anchorage chambers hidden in the St Elmo breakwater arm and the tip of the Ricasoli arm.
A precast concrete block production yard was set up at Mistra, supplemented by coralline limestone aggregate from quarries in Gozo. The coralline limestone was also used for the cladding of the breakwater above the level of the sea, the creation of an access stairway at St Elmo and the construction of he lighthouses. The blocks cast at Mistra were transported by barges to Grand Harbour and lowered into place using cranes. Vertical precast concrete dowels were used to join the blocks, with horizontal
The longer arm of the breakwater is detached from the shore at St Elmo, with
The longer arm of the breakwater is detached from the shore at St Elmo, with a 70-metre gap. The gap allows or the circulation of seawater. In 1906, a two-span iron footbridge was constructed to pro-
vide access from the shore to the breakwater and the lighthouse. The footbridge consisted of two spans each measuring 34.4 metres, supported on central supporting structures consisting of cylindrical iron columns with concrete infill. The bridge structures had a width of 6.4 metres and a height of 4.8 meres, with the main elements of the bridges consisting of two trusses with arched top chords and timber decking. In 1941, during the Second World War, the footbridge was partially destroyed in an Italian naval attack and eventually the bridge structures were removed. The central cylindrical supports were lighthouse remained isolated until a new steel footbridge was constructed in 2012.
The construction of a new footbridge was put out to tender by Transport Malta in 2009 and awarded to a joint venture composed of Vassallo Builders, Spanish bridge designers Arenas Asociados and Bezzina \& Cole. The new bridge consists of a new design that takes the historical context into consideration The main structural element of the bridge consists of a single arched truss with a span of 70 metres designed with similar proportions to the original bridge structure in terms of height-to-span ratio. Th bridge deck with an internal width of 5.4 The single Pratt trus, whe single truss
The single Pratt truss, which controls the main structural longitudinal behaviour of the bridge, is asymmetrical triangular hollow section whose top flass acting as a bottom chord; a top chord with an the walls of the abutments; and diagonal and vertical members with a triangular symmetrical section based on the seaward side of the truss. The transverse behaviour of the bridge is governed by cantiever ribs of variable height and an inverted triangular cross-section, joined to the truss. A secondary box girder with a trapezium cross-section is located on the harbour side. Timber decking is fixed to lue-laminated timber beams and the ribs. The new vertical truss rests on the existing masonry abut section of the footbridge forms an unobstructed viewing platform towards Grand Harbour, while the arch provides a sense of protection from the sea. The bridge is accessed via the original coralline limetone stairway. The single-span structure stands above the remains of the historical central supports. The bridge was designed to withstand the harsh environmental conditions of the site, with protective oatings and suitable access for inspection and maintenance. The new structure is a contemporary design that acknowledges the historical context, the original bridge structure and the ruins. The contem

Malta

porary expression of the St Elmo Footbridge provides a landmark at the entrance to Grand Harbour

Bibliography

Beade H., Capellan G., Arenas J.J., Bezzina A., (2011). Reconstruction of a Steel Footbridge at Valletta Grand Development Civil Engineering and the Built Environment, Borg R.P. et.al. Ed. Malta KTP \& ECCE.
Bonnici J., Cassar M., (1994). The Malta Bonnici J., Cassar M., (1994). The Malta Malta Maritime Authority.
Borg P.P. (1996). Selmun. A Story of Love. Malta: Union Print.
Cachia Zammit, R. (1996). Malta's Heritage: The Victoria Lines. Malta: Progress Press. Giorgio, R. De (1985). A City by an Order. Malta: The Author.
Hoppen, A. (1979). The Fortification of Malta by the Order of St John. Edinburgh: Scottish Academic Press.
Hughes. Q (1993) Malta. A guide to the Hughes. Q. (1993). Malta: A guide to the piteri, S.C. (1994). Fortresses of the Cross. alta: The Author

Spiteri, S.C. (1996). British Military Architecture in Malta. Malta: The Author. siteri, S.C. (2001). Fortresses of the Knights. Malta: Book Distributors Limited. Spiteri, S.C. (2008). The Art of Fortress Distributors Limited.

Montenegro

Bridge over the Sutorina stream
\square Herceg Novi

- from the Roman period
-Destroyed and rebuilt several times
- Bridges a torrential stream

The bridge is an example of ancient Roman bridge building expertise in Montenegro. It is believed to have been built between the second and third centuries AD.
It has been destroyed and rebuilt several times over the course of its history, and has frequently been damaged by flooding of the torrential stream that flows beneath it.
In the Roman period the bridge was an important link on the road between the ancient town of Epi daurum (formerly the Greek colony of Epidauros) and the Bay of Kotor
The bridge is no longer in use.

The Old Bridge at Moštanica

■ Nikšić, Moštanica
Third century $A D$, Roman period

- Also known as the Roman Bridge
- The oldest bridge in Montenegra
- Protected status as an
engineering monument

The bridge was built in the third century AD, in the ancient Roman period. At the time it was the The bridge was built in the third century AD, in the ancient Roman period. At the time it was the largest bridge in the region. It has been destroyed and rebuilt several times over
uries. The last time the bridge was destroyed was during the Second World War.
Today, despite being protected as an engineering monument, the bridge is not in the best shape. Nevertheless it remains a valuable part of Montenegro's historical and cultural heritage.

Montenegro

Ribnica Eridge
Modgorica
■ First built in Roman times

- One of the oldest bridges in

Montenegra

- Also known as the Nemanja Bridge

The origins of the bridge date back to Roman times. It was rebuilt in the Middle Ages when the city was under Ottoman rule. The stone parapet was added after the Second World War.
The bridge is also a popular meeting place for young people, thanks to its romantic setting
It is perfectly integrated into its surroundings and gives the impression that it has always stood here.

Montenegro

Rijeka Crnojevića Bridge

\{also known as Danilo's Bridge)
Rijeka Crnojevića
-1853
Very picturesque bridge
1 Built by Prince Danilo
Total length 43 metres

This two-arch limestone bridge over the river Crnojević stands on the site of a former wooden bridge built by Prince-Bishop Peter II (Petar Petrović Njegoš). The new stone bridge was built in 1853 by Prince Danilo, who dedicated the bridge to the memory of his father Stanko Petrović. The bridge was ater destroyed by the Turks and rebuilt by Prince Nikola.
Today the bridge is a popular tourist attraction, particularly because of the unique landscape and urrounding mountains. A further attraction is its proximity to beautiful Lake Skadar
Many famous Montenegrin painters have painted the bridge, giving it additional glamour.

Montenegro

The setting in which the Tsar's Bridge stands is a very unusual one. For most of time it does not func ion as a true bridge. Only when the rising water level transforms the Nikšić karst polje into a great lake, does it become clear why such a long and imposing bridge was built. Without this bridge it would not be possible to cross the polje for much of the year.
The bridge was built on the old road linking the cities of Nikšić and Podgorica. This connection was very important and a bridge of this nature was needed to ensure that it remained passable
It was built with financial assistance from Tsar Alexander III of Russia, after whom the bridge is named. The 269 -metre bridge was designed by Josip Slade. The Tsar's Bridge was built on the order of Prince Nikola.
At the time of its construction it was the biggest construction project in Montenegro.
The bridge has 18 stone arches, giving it a unique appearance.

Montenegro

This footbridge over the river Morača in the very centre of the Montenegrin capital was donated to the city of Podgorica by the city of Moscow.
It is a tubular steel arch structure with a single span. It stands just downstream of the cable-stayed Millennium Bridge, a well-known Podgorica landmark.
A monument to the Soviet singer-songwriter Vladimir Vysotsky stands next to the footbridge on the right bank of the Morača.

Poland

Poland

FOOTBRIDGES IN POLAND,

 PAST AND PRESENT
Text by Janusz Rymsza

Introduction
Footbridges were the first man-made structures used to cross obstacles such as rivers. Other kinds of bridges appeared later with the development of wheeled transport. We may thus assume that the history of footbridges in Poland is as long as the history of the country itself.

There are around 5,000 footbridges in Poland. These footbridges have been built
over roads and railways

- over rivers and lakes; - in recreational areas, such as parks, where footbridges form part of landscape architecture;
- in recreational areas, such as parks, where footbridges form part of landscape architecture;
bottom of valleys. Development on the two banks of a river requires connections to the road, which leads to the construction of numerous footbridges;
- in industrial areas where footbridges and walkways provide access to plants and installations.

Various materials have been used in the erection of footbridges, including timber, stone, brick, reforced concrete, prestressed concrete, iron, steel and plastics. Footbridges have recently become the inforced concrete, prestressed concrete, iron, steel and plastics. Footbridges have recently become the

A few remarks on the history

of footbridges in Poland
The field of footbridges has received only marginal coverage in literature. The history of the developent of footbridges in Poland has yet to be formulated and extensive research is required
The earliest bridges in Poland were made of wood. The availability of materials such as stone was thy bridges in Poland were constructed of timber until the mid-nineteenth century when railway tarted to be built.
Mieszko I, the first ruler of Poland, built a fortified settlement on the island of Ostrów Lednicki, located on Lake Lednickie, 50 kilometres south-west of Biskupin. Two wooden bridges, respectively 438 metres and 187 metres long, were used to link the eastern and western parts of the island to the shores of the lake. These bridges were between 4.10 and 4.50 metres wide and had spans of between .00 and 4.50 metres. The oak structures consisted of beams resting on groups of piles. Since the lake was up to 10 metres deep in places, some of these piles were up to 14 metres long. All the element he basis of dendrochronological examination of the excavated piles and other historical records, it has been established that the bridges stood here from 993 to 1038.

Footbridge over the
river Odra
Krosno Odrzańskie
Built before the First Worla War

The picture above is from an old postcard from 1917
Footbridges of this kind were used in Poland for centuries and some can still be seen today in mounain villages

Poland

Cast-iron arch bric

Łażany [Laasan]

- 1796
- The first cast-iron bridge in

Europe outside Great Britain

- Destroyed during the Second World War

The first use of iron in bridge building in Poland dates from 1796, when an arch bridge was built ove he river Strzegomka in Łażany. This bridge, which was destroyed during the Second World War, wa the first iron bridge in Europe outside Great Britain. Three iron footbridges built in the 1820s are stil tanding today: in Opatówek near Kalisz (1824), in Ozimek (1827), and in Krzeszowice near Kraków.

Opatówek cast-iron footbridge
Opatówek

- 1824
-The oldest cast-iron footbride in Poland still in use
■Span 10.30 metres
- Recently renovated

The footbridge in Opatówek was built in 1824 in the grounds of the country hous belonging to General Józef Zajaczek. It is a single-span structure consisting of four main girders cast in iron. Each of the girders is made up of three segments joined by bolts The deck probably originally consisted of tim-
ber planks, although these were later replaced by reinforced concrete slabs. The bridge rests on solid stone abutments and has a span of 10.30 metres and a total length of 13.80 metres. The total width of the deck is $3.50 \mathrm{me}-$ tres. The main girders are adorned with orna ments which were cast whole.

Poland

Courtyard

Polytechnic
Lviv
■ 1894
The finst reinforced concrete
footbridge in Poland
Thickness of the arch 10 cm

The first reinforced concrete footbridge in Poland, located in the courtyard of Lviv Polytechnic (today in Ukraine), was built in 1894 by Maximilian Thullie. Remarkably, the arch has a minimum thickness of just 10 centimetres. At the time of its construction it was one of the most slender reinforced concrete ootbridges in the world

Cable-stayed footbridge in

Tylmanowa

Tylmanowa

- 1959

The first cable-stayed footbrid
in Poland

A number of footbridges were erected during the Second Polish Republic (1918-1945), most of them near railway stations. The period from the end of the ic construction of footbridges, mainly in small towns and villages, in order to facilitate the development of areas that were cut off from the rest of the world. A notable example of such an area is the village of Ty Imanowa on the river Dunajec, where the first cable stayed footbridge in Poland, designed by J. Szulc and W. Główczak was built in 1959. This bridge has a span of 78 metres. Three other significant structure were later built in this area including a footbridge with a span of 100 metres (1961).

Poland

Poland

Footbriage over Trasa

kazienkowsk

- 1973

Poland's economic revival in the 1970 saw an increase in road building and the construction of urban infrastructure. The arch footbridge over Trasa Łazienkowska, an urban expressway in Warsaw, was designed by

Turn of the millennium

Footbridge over the river

Footbridg
Kfodnica

- Sławięcice

1993

The last two decades have seen intensive growth in private car use in Poland. This ha resulted in the construction of motorways and city ring roads and the activation of recreation
city ring roads and the activation of recreation reas. One consequence of this has been the construction of numerous bridges, including footbridges. Bridge building in this period has been characterised by the use of a variety of structural solutions,
architectural forms and materials. Recent developments include the increasingly common use of steel ubes as structural elements of bridge superstructures and supports (spatial trusses, arches, pylons, etc.). The main girder of the footbridge over the river Kłodnica in Sławieqcice consists of steel tubes.

Cable-stayed footbridge over
the river Bystrzyca

■ Wrocław

1999

- Pylon and main girder made from steel tubes

This footbridge over the river Bystrzyca in Wrocław-Leśnica was built to replace an earlier timber structure that was destroyed bridge is a steel cable-stayed structure.
Designed by: Mosty-Wrocław s.c., chief designer Jan Biliszczuk

Crooked Stick [Krzywy Kij] footbridge over the A4
motorway

Mlyński Staw, near Opole

ロ

Main span 62.4 metres
Two cable-stayed footbridges were built over the A motorway in 2000. The two footbridges are identical in terms of structure and only differ in colour and the arrangement of the supports, as a result of the differen configurations of the two sites. In both cases a prestressed concrete deck is supported by stays anchored to a steel pylon. The pylon is A-shaped. The span is supported
only by the abutments (not directly by the pylon). The footbridge pictured is one of two identical structures.

Design: Mosty-Wrocław s.c., chief designer Jan Biliszczuk

Eros Arch footbridge over
the A4 motorway
Olešnica Mala, near Opole
12000

The deck of this footbridge, known as the Fr Arch, was designed using the same assumptions that are used for cable-stayed structures. The plane of the single steel arch is diagonal to the axis of the deck. Design: Mosty-Wrocław s.c., chief designer Jan Bi
liszczuk

Poland

Malt Island Foo

the river Oci

- 2002
\square Footbridge to Malt Island

The Malt Island Footbridge crosses one of the arms of the river Odra in the centre of the city of Wrocław. The footbridge connects th riverside
Słodowa). The structure consists of two rein Slodowa). The structure consists of two rein-
forced concrete spans and a main span in the form of a braced steel arch

Design: Mosty-Wrocław s.c., chief designe Jan Biliszczuk

Poland

Spanning the river Dunajec, this cable-stayed footbridge links the village of Sromowce Niżne in Po and to the village of Cervený Klástor in Slovakia. The deck of the footbridge is suspended from a pylon consisting of steel tubes. The deck itself is a glued laminated timber structure. On completion in 2006 he bridge became the longest glued laminated timber bridge in the world, with a span of 90 metres.

Design: Mosty-Wrocław s.c., chief designer Jan Biliszczuk

Poland

Footbridge over the $\mathbf{S 1 1}$
expressway

- Kurnik

■ 2009

- Deck made of plastic materials

This footbridge was built in 2002 on the site of a sewage treatment plant in Łódź Spanning the Sll expressway in Kurnik, i plastic materials.

Malta footbridge

- Poznań
-2009
Attractive illumination at night
The Malta Footbridge in Poznań was designed to al low pedestrians and cyclists to cross Ulica Baraniak (Archbishop Baraniak Street) and provide a connec tion between the Malta Park recreation area and the shopping and entertainment complex on the other side of the road. The vision and aim of the architect was to create a spatial arrangement reminiscent of a marina on the shores of Lake Malta, an artificial lake with an Olympic rowing course, since the Malta area is the largest recreation and sports area in the city. The area of Malta Park is visited by around 40,000 people daily - more at weekends. The footbridge is a cable-stayed structure with a single pylon at the southern end and a curvilinear plan. The pylo consists of two vertical elements bent into an arc and joined by horizontal steel bracing. The vertical attractively illuminated at night.

Poland

Arch footbridge over the
Arch footbric
river Vistula
■Kraków
Computer visualisation

This planned new footbridge will connect the historic Kazimierz district to the Ludwinów area on the ight bank of the river. It will be located in the city centre, in the vicinity of the Wawel Royal Castle The main part of the structure is a span consisting of two steel girders anchored to massive concrete
abutments of complex shape, with a central deck located between them. The side decks are intended or pedestrian and cyclists, while the central deck, equipped with a stairway, is intended exclusively for pedestrians. The connection of the central girder to the lateral girders supporting the side decks is provided by an irregular radial arrangement of slender steel columns and cross-beams
Design: Mosty-Wrocław s.c., chief designer Jan Biliszczuk

Poland

Arch footbridge over the

river Vistula

Kraków

■ 2010
Main
Assembled on shore and
launched into final positio

This footbridge connects the Kazimierz and Podgorze districts of Kraków. In structural terms it is a fixed braced arch with a span of 148 metres and a rise of 15.34 metres. The deck structure consists of steel pipe transverse beams. They are supported by the arch by means of skewed cable hangers in an X-shaped arrangement, creating equilateral triangles with the transverse beams in the cross-section. The bridge was assembled on the riverbank (parallel to the river) and launched by means of rotation onto the supports.

Portugal

This bridge connects the green parks located along both banks of the river Mondego, very close to he centre of Coimbra. The central span allows rowing competitions and small sailing boats to pass underneath. A central "piazza" is created by the two straight but longitudinally non-aligned half-bridges extending from each riverbank. Half-arches in those half-bridges are shifted upstream on the left bank ide and downstream on the right bank side, which ensures improved lateral stability. Structurally, the ridge combines the central arch with two cantilevers extending from the strong triangular cells defined The rowing channel on the
the peninsula. The small "false" bank required an extra span to provide continuity over a pier located continuity by clamping and ensure span over the abutment on the right bank reproduces the structural span.
Designers: CECIL BALMOND (Architecture) and NTONNIO ADÃO DA FONSECA (Structural Engineering) ANTONIO ADAO DA FONSECA (Structural Engineering) Structural Engineers at AFA Benco, Renato Bastos, António Pimentel Adão da Fonseca and Nuno Neves

Portugal

Carpinteira Footbridge

- Covilhã

■ 6 September 2009
-Main span 49.00 metres, deck width 3.50 metres
-Total length 220,74 metres $[42.27+48.41+49.00+49.30$ +31.77 metres]

- Steel deck with timber pavement

This bridge is located in the small city of Covilhã, at the foot of the Serra da Estrela mountain range. Covilhã is built on hillsides and this footbridge allows pedestrians to cross from one hill to the other without having to walk all the way around the valley of the Carpinteira stream. The architectonic concept is a clear-cut planar " π " over the stream, with non-aligned straight segments connecting to the hillsides. The result is a meandering deck with improved lateral stability, although the piers are not positioned at the corners of the intersecting deck segments.
The two central piers 40 metres high, have a rectangular st steel beams of a depth of 1.75 metres. remposite section, while the

Designers: JOÃO LUÍS CARRILHO DA GRAÇA (Architecture) and
ANTONIO ADÃO DA FONSECA (Structural Engineering)
Structural Engineers in AFAconsult: Antonio Adão da Fonseca, Carlos Quinaz, Renato Bastos and Miguel Pereira

The Lanthieri Mansion Bridge

- Vipava, over the river Vipava
- 1669
- Gives access to the baroque

। anthierimansion

- Unique monolithic cut-stone piers
- Crossed by many notabilities

Text by: Gorazd Humar
All photos: Gorazd Humar

One of the most interesting bridges in Slovenia - a veritable pearl of its rich stonecutting tradition and culture - is without a doubt the footbridge by the Lanthieri mansion in Vipava. Hidden away on the inner courtyard side of the baroque mansion built by the noble Lanthieri family in Vipava, the bridge pans one of the many springs of the river Vipava and connects the house to the estate's farm buildings. It is interesting not only for its architecture, enriched by a stone balustrade of a clearly Mediterranean it is entirely made of cut stone. This would not be anything unusual if the bridge were an arch bridge but the main supporting structure of this bridge consists of solid flat stone slabs resting on specially shaped monolithic cut-stone piers standing in the bed of the Vipava.
This is a very unusual design for a bridge, since stone slabs are known to have a very low tensile stress tolerance. For this reason stone is almost never used for the supporting elements of completely

flat bridges such as the Lanthieri mansion bridge. Such a design is only possible if the spans of the tone bridge structure are relatively small. In the case of the Lanthieri bridge, which has seven spans of lifferent lengths, the span of the longest stone slab (which is a full 12 centimetres thick) is 2.63 metres The total length of the bridge, which has seven spans, is 14.18 metres. The width of the bridge is 2.65 metres, widening to 4.32 metres at the centre (the widest part).
The beauty and harmonious appearance of two loggias, one on eiher side, that have the effect of widening the central part of the bridge
In the structural sense the Lanthieri bridge is unique in Slovenia - and probably the world. While hort stone slabs are a frequently used structural element of many bridges, I know of no other bridge that also has individual monolithic stone piers in the middle of a river.
The cut-stone piers are wedge-shaped on the upstream side in order to reduce the pressure of the water on them. Despite the bridge having been reconstructed, the piers are all original and have neve been replaced.
Thanks to its rare and remarkable combination of structural and supporting elements, the Lanthier ridge in Vipava takes its place among the unique bridges of the world.
The bridge is believed to have been built in around 1669 (although the exact date is not known), when the noble Lanthieri family built their new mansion in Vipava. This was the period of greatest prosperity of the Lanthieri family, and just a few years later (in 1683) they also built a summer residence called Belvedere, today better known as Zemono Manor, not far from Vipava. The Lanthieri family hosted many important guests in their Vipava mansion, among them emperors, popes and artists. Carlo Goldoni, Italy's greatest comic playwright, who was famed as the renovator of the commedia dell'arte adition, stayed with the Lanthieris for several months in 1727. The famous adventurer Giacomo Cas ova was also a regular guest of Count Lanthieri and his family.
the Municipality of Vipava supported by funds from the Furop. This generous action, an initiative with the technical assistance of the Restoration Centre in Ljubljana, included epairs and reconstruction of the bridge, in this way saving one of the most interesting and beautiful bridges in Slovenia from falling into ruin

Slovenia

The Hradecky Bridge

Liubliana, over the river Liubljanica
1867, moved to new location in
1931 and 2011

- Cast-iron tubular arch bridge
with a hinge in the centre
-The world's first hinged
pedestrian bridge

Text by: Gorazd Humar
All photos: Gorazd Humar

This cast-iron arch bridge has an extremely interesting history. It is named after a long-serving mayo of Ljubljana, who held office from 1820 to 1846. The bridge itself is the most notable product of the famous Auersperg iron foundry in Dvor, near the town of Zužemberk. The plans for the bridge were drawn up by chief engineer Johann Hermann of Vienna. He designed what was for the time an extremely avantgarde bridge structure consisting of two separate sections joined in the centre of the bridge by means of hinge. From the static point of view the bridge can thus be seen as a single-hinged arch bridge. hese were railway bridges. Almost none of these early hinged bridges survive today.

The Hradecky Bridge was not only remarkable for its structure of hollow cast-iron tubes, it was the first footbridge in the world to use a hinged structure. In 1867 hinges still represented a revolutionary echnical solution. In view of these facts, the Hradecky Bridge is at least from this point of view unique in the world and an early representative of an important stage in the development of engineering experse in bridge-building
used have been demolished iron bridges (for the most part railway bridges) in which hinges were firs Bridge is today the oldest surviving hinged bridge in the world.
The bridge's cast-iron arch structure has a span of 30.3 metres and comprises three parallel arches consisting of bolted together prefabricated sections. The supporting cast-iron tubes are hollow and einforced by longitudinal ribs. The two halves of the arch meet at the centre of the bridge in a hinge which enables each half of the arch to rotate independently of the other
The interesting thing about this bridge, which originally stood in Ljubljana's old town centre, is that it has changed location twice since it was first built in 1867. The first move took place in 1931,
when work began on its replacement - the new Cobblers' Bridge designed by the famous architect Joz̃e when work began on its replacement - the new Cobblers' Bridge designed by the famous architect Jozze
Plečnik. The bridge stood - somewhat neglected - in its new location for 80 years, until 2010 , when it was once again dismantled and re-erected in a new location in Ljubljana. In 2011 the bridge was care ully restored and today it once again serves as a pedestrian bridge over the Ljubljanica. A cycle path has also been added.
Almost 150 years after it was first built, with the entire bridge structure having twice undergone move to a new location, the Hradecky Bridge is still in solid good health. Thanks to its unique and hinged bridges

The Cobblers' Bridge is another of the most distinctive bridges in Ljubljana. It stands on the site of a ormer (probably wooden) bridge that dated from Roman times. Medieval Ljubljana gained a brand-new wooden bridge in the twelfth century. For reasons of defence, only two bridges provided access to the d centre of Ljubljana in the Middle Ages.
Today's Cobblers' Bridge was known in the Middle Ages as the Butchers' Bridge, since numerou butchers had their stalls on it. After the Butchers' Bridge burnt down in the nineteenth century, a new in a new location not far from the Cobblers' Bridge. The cast-iron bridge stood here until 1931, when

he architect Jože Plečnik began to build the present-day Cobbler's Bridge in the same location. He wanted to give the new bridge a more monumental appearance. Above all, he wanted to make it wider and create a new town square lying over the water. The many decorative elements of the bridge include he stone balustrades and, most notably, the rows of columns with Corinthian and Ionic capitals. Th ights on the columns at the bridge's centre point are positioned outside the bridge parapets. In this way Plečnik's Cobblers' Bridge is just one more link in the chain of interesting a
ridges that the great architect created for Ljubljana. Once again Plečnik showed hoiquely designed ridge into the context of Ljubljana's old town centre, and how to give a bridge strow to insert a new ge structure a distinctiv and individual physiognomy. In the case of Cobblers' Bridge, he was entirely successful in this aim.

The Triple Eridge

Liubliana

- 1842 - central stone bridge, 1932 - lateral bridges
The most famous pedestrian bridge in Slovenia - A unique creation of the famous Slovene architect Jože Plečnik - Trams once ran over the bridge Text by: Gorazd Humar All photos: Gorazd Humar

Tromostovje (literally "Triple Bridge") is a group of three bridges, one next to the other, that represen the most important connection between Ljubljana's Old Town and the newer districts on the opposite bank of the Ljubljanica. Since the introduction of a new traffic regime in the city centre, Tromostovj has been a pedestrian-only bridge, but this was not always the case. From 1901 onwards trams ran cross the central bridge, along with other motorised traffic
single harmonious and highly functional whole, thanks above all to the periods, together they form architect Jože Plečnik in 1931 and 1932.

Plečnik used the experience he had gained while working in Prague to create a group of bridges with curious funnel-like shape that unobtrusively channels traffic from different directions towards the ridges.
Walking across the three bridges, one gets the impression of a broad city square, since the water beeath them can hardly be seen. The poplars that grow on the river bank between the individual bridge are artfully positioned in such a way as to remind us of the depth beneath the bridges
The central bridge of today's Tromostovje is a stone bridge with two arches. Built in 1842, it was dedicated to Archduke Franz Karl of Austria, the father of Emperor Franz Joseph I. The dedicatory inscription still adorns the bridge today.
In 1931 it was decided to widen the bridge to cope with the growing amount of traffic, and the archiect Jože Plečnik was commissioned to draw up the plans. The remodelling of the older central bridge he construction of two lateral reinforced-concrete arch bridges to the right and left of the central bridge and the addition of balustrades and lights of original design gave rise to a new bridge complex that has become an icon of Ljubljana. The lateral bridges are somewhat reminiscent, in their form and their balnean inspiration that numerous baroque architects, most of them Italian, had given the city before him. Today Tromostovje is without question crossed by more pedestrians than any other bridge (or group of bridges) not just in Ljubljana but in the whole of Slovenia.

The Škocjan Caves

The Škocjan Caves are an extraordinary piece of the subterranean world of the Karst, in southestern Slovenia. This enormous system of caves and passages has a total length of 5.8 kilometres. Th
 The Škocjan Caves are a
ortance as part of world natural heritage is reflected in the fact butiful caves in the world. Their imUNESCO World Heritage List. The caves are the only natural heritage sight in Slovenia to be under the aegis of UNESCO.
The Škocjan Caves contain one of the largest subterranean chambers in Europe. The Martel Hall is 46 metres high, 120 metres wide and 300 metres long: almost large enough to contain the Great Pyramid of Cheops. A path runs almost the entire length of the Skocjan Caves, allowing visitors to admire Bridge and the Marinič Bridge.

The Cerkvenik Bridge
■ Škocjan
■ 1937, rebuilt in 2004

- One of the largest bridges ever built underground
- Lies 47 metres above the
surface of the river

The Cerkvenik Bridge spans the river Reka at the point where it passes through the Hanke Channel, which is essentially a deep natural hollow. The visitors' path crosses the river at this point, via the bridge. The bridge is named after a local man, Miklov France Cerkvenik, the head of a group of guide from the local area who worked in the caves shortly after the First World War.
The bridge, which has a span of 15.65 metres and passes 47 metres above the river Reka is located in 90 -metre-high cavity. The two ends of the bridge are cut into the living rock. The Reka is a true underround river with an extremely changeable water level. Its average annual rate of flow is $9 \mathrm{~m}^{3} / \mathrm{s}$, but it has been known to reach a maximum rate of flow of $380 \mathrm{~m}^{3} / \mathrm{s}$. In 1965 the Cerkvenik Bridge was submerged when a flood in the caves saw the water level rise to a height of 10 metres above the level of the bridge. In 828, before the bridge was built, the water level reached 30 metres above the level of the current bridge The Cerkvenik Bridge was rebuilt in 2004. With a more durable steel supporting structure, it wil nable the safe crossing of the Hanke Channel far below for many years to come.
The construction of the new Cerkvenik Bridge was an operation of considerable complexity, but one and the growing numbers of visitors to the Stk the oldan Caves. Construction of the new bridge reepresented unique logistical challenge for the builders, since the bridge site is 900 metres from the cave entrance and can only be reached via a steep, narrow path among stalactites and stalagmites. The main stee upporting elements were therefore made in five smaller pieces weighing no more than 250 kilograms. These were then fitted together using prestressed bolts to form a girder 17.55 metres long

Slovenia

The concrete for the deck of the bridge - five cubic metres of it - was mixed over a period of eigh hours in a small cement mixer set up next to the bridge. The concrete had to be transported using wheelbarrows. The old bridge served as a supporting structure for the new bridge. After completion of he new bridge it was removed and taken out of the cave by the same route

Client: Škocjan Caves Park
Hient: Skocjan Gaves Park Design: Gregor Gruden, IMK Ljubljana, Slovenia
Contractor: IMKO Ljubljana d.d., Slovenia

The Marinič Eridge

- Škocjan
- 1891 - first construction,

2010-reconstruction

- Footbridge Award 2011 ,
Wroclaw [High commendation
- Steel tube girder with two bends
gives original shape
- Highly complex assembly using
high-mountain construction
techniques
Text by: Rok Mlakar, Viktor Markelj

The Marinič Bridge is the second bridge in the Skocjan Caves complex to have been reconstructed in recent years. Actually, it is not really accurate to talk about the reconstruction of the old bridge, ince the bridge erected in 2010 (2008-preveri) is a brand-new and highly original structure. The firs bridge in this location was built in 1891 and was known as the Concordia Bridge. Following renovation between the wars, it was renamed the Bertarelli Bridge
The Marinič Bridge, which also crosses the river Reka, is located at the entrance to the eastern section of the Škocjan Caves. Above it rises a vertical cliff more than 100 metres high - down which he bridge structure had to be lowered during construction. The new Marinič Bridge replaced an olde bridge of simple design that had reached the end of its useful life. The new bridge can hardly be comsame location it follows an entirely different route.
The essence of the new Marinič Bridge is a supporting structure consisting of a single steel tube with a diameter of 457.20 millimetres and a thickness of 20 millimetres. This 28 -metre tube is divided alon its length into 12 sections, with crosspieces welded directly to the main tube. These represent the sy em that supports the steps and landings that comprise the bridge deck. The entire bridge structure was made in three separate sections and bolted together, using prestressed bolts, via flanges on the tubula The anchorage is held in place by two geotechnical anchors. Assembly of the bridge's main structure was a particularly attractive operation, since owing to the inaccessibility of the bridge location, it was lowered into position down a 100-metre cliff. A mobile crane was used to lower the bridge substructure oo a precisely determined spot.
The new Marinič Bridge undoubtedly represents an additional attraction in the wonderful Škocjan Caves park that serves to make the route through the caves even more interesting. The new bridge rep-

Slovenia

resents an exciting new experience for visitors by offering them new and unique views of the caves. The original, imaginative and attracike the structural man itelf Thim, jus ion is completed by the vertical cliff that rises for more than 100 metres above the bridge and, together with the noise of the river far below, sets the adrenaline pumping. Thanks o its well-thought-out design and details, the bridge provides all visitors to the caves with a reassuringly safe way to cross the Reka.
For its planners and builders, the new Marinic Bridge represented a unique chalhad to ensure that it would fit unobtrusively into the sensitive and distinctive natural environment of the cave. This called for a considerable degree of expertise, particularly on the part of the planners, when it came to considering structural and architectonic details. The inaccessibility of the bridge's location builders, since assembly of the bridge strucure required techniques normally used for onstruction in mountain areas.
The result of the effective and highly proessional cooperation of all parties involved in he construction of the new Marinič Bridge in he Skocjan Caves is a new part-suspended nique in Europe and perhaps even the world.

Client: Skocjan Caves Park, Skocjan, Slovenia Design: Rok Mlakar and Viktor Markelj, nženirski Biro Ponting d.o.o. Maribor Coženirski ior: Joint Venture Primorje d.d. and
Kraški Zidar d.d.

Slovenia

The ancient town of Ptuj stands on the river Drava, at the point where the Panonnian region extend nost deeply into the sub-Alpine region of central Europe, and has been the site of important bridges ince Roman times. In the Middle Ages the ancient monumental stone bridges located near the Roman astrum of Poetovio were replaced by wooden structures. These survived until relatively recently, be fore eventually being swept away by floods. After the Second World War they were replaced by concrete he two banks of the river represented by the historical pedestrian crossings were thus interrupted. In order to stimulate the revitalisation of the old town centre, the local authorities decided to build a new ootbridge in order to reestablish the former connection.
This bridge connects the left bank of the Drava with a square on the right bank. Despite the fact that
This bridge connects the left bank of the Drava with a square on the igo be drawn from history are the new bridge is a modern steel and concrete structure, numerous elements drawn from history are eminiscent of the wood and iron structures of the past.
The 154-metre steel superstructure of the bridge, with a geometry which resembles that of the former
wooden bridge, rests on four piers and two abutments. The deck consists of a thin concrete slab with wooden bridge, rests on four piers and two abutments. The deck consists of a thin concrete slab with, on either side, a coping supporting a polished steel railing. The railing is topped by a wooden handrail the handrail illuminate the deck without spoiling the view of the night sky.

Owner: Municipality of Ptuj
Design: Marjan Pipenbaher, Ponting d.o.o., Maribor Contractors: SCT d.d., Ljubljana and Meteorit d.o.o., Hoč

Studenci Footbridge

Maribor, over the Drava

- 2007
- Footbridge Award 2008,
- Original steel truss structure
- Very economical solution

Text by: Viktor Markelj

The Studenci Footbridge over the Drava in Maribor is an example of the successful re construction of an old bridge through the design of a new, technically innovative structure bridge is characterised by an extraordinary transparency and lightness of appearance, achieved through a relatively simple structural solution which, thanks to clever design, has created an extremely elegant footbridge that is visually more reminiscent of a shallow arch structure than a monotonous load-bear
ing lattice structure. This successful ing lattice structure. This successful optical illusion was achieved through the almost playful geometrical relationship between the bridge's mas traight geometry and a constant depth for the whole length of the bridge, the wooden deck, mounted on a secondary steel structure (crossbeams), follows a radial curve. With this layout, the steel truss penetrates the wooden deck towards the abutments, dividing the footpath in two. Towards the middle of the bridge the truss sinks completely beneath the bridge deck, creating a wider, uniform and elevated public space directly above the river. The combination of a steel load-bearing structure with a wooden deck has become something of a design trend for long-span footbridges in urban settings. The Studenc Footbridge, which is also designed to be used by cyclists, is lit by energy-saving LED lights housed The total power consumption of these lights is just 350 Watts. This was also an optimal solution for the developer in terms of cost.
The main load-bearing structure of the bridge is a triangular steel space truss girder with a depth of 2.05 metres. The space truss consists entirely of welded steel tube sections. The three equal spans of he bridge derive from the position of the existing riverbed supports and are 42 metres long. The total length of the bridge is 126 metres and the structural weight of the entire steel structure is just 93 tonnes. The clear width between the handrails increases from 3.20 metres in the middle of the bridge to 5.80 metres at the abutments. The deck planking, the individual planks of which have a thic
The Studenci Footbridge won the prestigious Footbridge Award in the technical medium span cateory at the Footbridge Conference in Porto (Portugal, 2008). The jury highlighted the bridge's unique design, the imaginative approach to construction and implementation, and the remarkable cost/performance ratio. The total cost was less than $€ 1,200,000$, which has since been recognised as a record low price for a landmark footbridge

Design: Viktor Markelj, Ponting d.o.o., Maribor
Cooperating architect: Reichenberg arhitektura d.o.o., Maribor Owner: Municipality of Maribor
Contractors: The POMGRAD group, Konstruktor NGR d.d., Hoče teel structure: Meteorit d.o.o., Hoče
Time of construction: Jan. 2007 - Dec 2007

Footbridge over the Sava

- Radovljica
- 2007

For pedestrians and cyclists

- Slender arch structure

Set in a beautiful landscape

The new bridge over the river Sava near the town of Radovljica forms part of the Lesce-Bled cycling route, which crosses an area of Slovenia that is particularly popular with tourists. The cycling route
links two beautiful lakes: the man-made Sobčev Bajer and the larger and more famous Lake Bled. The bridge is a slender reinforced concrete structure that is 55 metres long and crosses the Sava in single span.
It is located in an environment that is extremely sensitive to all forms of construction and development. The task of the designers was therefore particularly difficult. The solution they proposed - an elegant and slender arch structure - was deemed acceptable. The bridge is used also by cyclists. Th illumination concealed in the railings creates a special effect at night.

Design: Peter Koren, Ko-biro Maribor, for the structure / Peter Gabrijelčič, for the architecture Contractors: CP Krany and CP Maribor

Engineer: ZIL Inženiring d.d., Ljubljana
Consultant: DDC svetovanje inženiring d.o.o., Ljubljana

The "Beruna Eridge"

- a film star
\square Bovec, over the river Soča
■ 2007
- Temporary bridge built for the
- Modelled on the ancient Roman
"Caesar's Bridge" on the Rhine
-Built in 3 weeks
Text by Gorazd Humar and Viktor Markelj

In 2007 the final scenes of a film called Prince Caspian were filmed on the banks of the river Soča near Bovec. This was the second film based on the bestselling Chronicles of Narnia series of books by C. S. Lewis to be made by Walt Disney Pictures and Walden Media. The making of this film was rated 2007 as the biggest film project in the world that year
The action of the final part of the film takes place on a bridge that was built specially for this film roject and which had to be crossed by 300 foot soldiers and 60 horsemen. The climax of the film see ariver god destroy an army of evil spirits at the precise moment that the army is crossing the bridge The bridge is destroyed along with the army.
The bridge used in the film was built over the river Soča near Bovec. A detailed plan containing static calculations and all the necessary drawings was prepared for the actual construction of the bridge. The famous wooden Caesar's Bridge over the Rhine in Germany, built two thousand years ago, was used as
a model for the bridge in the film. model for the bridge in the film.
The bridge rested solidly on specially prepared prefabricated concrete foundations hidden in the bed f the Soča. The supporting piers were made of pine logs with a diameter of $50-60 \mathrm{~cm}$, fastened togethe y concealed steel bolts and - purely for visual effect - bound by thick ropes. Despite the practical
difficulties involved in its construction, with the builders having to work in the water, the bridge - 55 metres long and 6 metres wide - was built in just three weeks. The requirements of the screenplay also meant that it had to be removed in a mere two days. During the filming of Prince Caspian, the level of
the Soča rose and almost entirely covered the bridge, but it survived undamaged.
When filming was complete, the remains of the bridge were removed and the entire area of the film set was returned to its original state, so that it looked just as it did before filming began.
Commissioned by: Walt Disney Pictures and Walden Media
Contractor: Primorje d.d., Ajdovščina, Slovenia; project manager Gorazd Humar

Spain

Walkway connecting the
Trasmediterranea terminal
and new passenger halls

- Barcelona

- 1998

-430-metre elevated pedestrian walkway

■Very little maintenance required

As a functional element providing direct access to the new passenger halls of the Port of Barcelona together with a connection between terminals, an elevated pedestrian walkway was proposed so that passengers could have direct and comfortable access from ships to the terminal buildings. The main dea driving the design was an attempt to harmonise the functional, contemplative, aesthetic and strucfural aspects of the walkway, which enjoys a privileged position with views of the harbour area. Thus, he functional aspects determined the following prerequisites
Maximum protection against wind, rain and sun along the walkway, which could be as long as 430 metres, providing both a comfortable and visually pleasing walk
Maintaining a sense of open space while providing a direct and unobstructed view of the sea.
Simplicity in the operation of passenger access at all points, including movable gangways between ships and the walkway.
No less important, the walkway must be aesthetically pleasing, although this must derive mainly from echnical and structural aspects rather than showy or merely decorative design.
Finally, another important aspect was the absence of any sort of joints along the walkway, since no matter how good the maintenance, the deterioration of joints is inevitable in both the medium and long term.
In order to satisfy all the above requirements, the form chosen was that of the colonnade, an element deriving from classical architecture, in order to create a light and slender system of white concrete, in-
corporating the following elements:
A 3.20-metre wide deck consisting of a thin slab and two lateral ribs; these hold the prestressing cables that are necessary in order to keep all sections permanently under compression, due to the marine environment of the site.
Full slab areas resembling capitals which, while creating a certain coffered effect, hold the prestressing anchors and connect monolithically to the piers/columns.
series of cylindrical columns, with smooth curved surfaces and a gem-like cross-section, of great uch as cre slenderness in order to allow the displacements imposed by rheological phenomena ings.
From the functional point of view, the following aspects were defined:
Full openness towards the quays, with a single handrail of removable sliding module
Full openness towards the quays, with a single handrail of removable sliding modules.
Complete closure of the opposite longitudinal side, by means of tinted glass panels which, while allowing a view of the surroundings of the port and the city reduce glare and create a certain while ashelter within the domain of the walkway. A roof of translucent white cellular polyc
propriate luminosity and a sense of openness above.
This design made it possible to reduce to a minimum the maintenance of the walkway, which will fully retain all its qualities over time despite being located in an aggressive environment.

Owner: Barcelona Port Authority
Designer: Julio Martínez Calzón, MC2 Estudio de Ingeniería Contractor: NECSO

Spain

This footbridge, built in 2001, is located in the city of Lleida and spans the high-speed railway between Madrid and Barcelona. It is an entirely glass-fibre reinforced polymer structure using standard pultruded profiles. Finding an appropriate structural form to bridge the required span using standard FRP profiles was a significant challenge
The final structure is a bowstring truss with a span of 38.0 metres, a rise of 6.2 metres and a width of 3.0 metres. The total weight of the bridge is approximately 19 tonnes. It is believed to be the longest pan in the world using this type of structure i.e. an arch with standard GFRP profiles. The bridge wo
The range of applications 2005 (category: innovation) in Venice. mum maintenance, lightweight structures, ease of handling, short construction times and no magnetic interaction are required. Material supply and design costs mean that the initial expense is higher when compared with traditional steel-based solutions, but considerable savings are made in construction and maintenance over the complete life cycle
The GFRP profiles were made in Denmark. The profiles were so light that they could be easily handled in the assembly area, which was located in the footbridge access. Here they were assembled int complete single unit and lifted into position in a single lifting operation which lasted less than three hours.

Owner: ADIF
Designer: Juan A. Sobrino \& F. Javier Jordán Pedelta Constructor: Rubau-Copasa JV

Spain

Pedro Arrupe Footbridge

- Abandoibarra [Bilbao]

■ 2003
Main structure in stainless steel
■Total length 142 metres, width 7.6 metres
-Perfect symbiosis of structure and functionality

The design of the new Abandoibarra footbridge, which spans the river Nervión in Bilbao (Spain), next to the Guggenheim Museum and the University of Deusto, had to be striking enough to fit in with its surroundings. This was the main reason that stainless steel was chosen as the main structural mateial. A duplex stainless steel of grade 1.4362 with high mechanical properties was chosen, providing yield strength of 400 MPa , an ultimate tensile strength of 630 MPa , a Young's modulus of 200 GP central deck 7.6 metres wide and eight side ramps each 4.1 metres wide spanning from the main supports, adjacent to the river banks, onto the central deck, allowing pedestrian access from all levels. The U-shaped folded plate cross-section, 20 millimetres thick and 1.95 metres deep, is transversally stiffened by U-shaped frames, which provide the necessary stiffness against distortion, act as load-carrying members and support the wooden deck, which is fixed to a concrete slab spanning the transverse frames. A perfect symbiosis of structure and functionality is achieved, since the stainless steel webs act ot only as load-carrying elements but also as the parapets of the footbridge
Stainless steel is therefore the main structural material, allowing the design to take full advantage of its aesthetic qualities.

Owner: Bilbao Ría 2000
Designer: José Antonio Fernández Ordóñez, Francisco Millanes Mato, Lorenzo Fernández Ordóñez Contractor: Ferrovial-Agroman \& URSSA Joint Venture

Spain

Pedestrian/Eicycle

Green Cycling Ring

\square Madrid

- 2006
-Part of a 60 km bike path
- Very transparent structures

The Green Cycling Ring (Anillo Verde Ciclista) is a kind of linear park that joins the existing or lanned major green areas that will encircle the city of Madrid.
The Ring crosses several high-density arterial roads, making at-grade crossings unfeasible. It was herefore decided to build overpasses to allow cyclists to "jump over" these roads without affectin raffic.
The works were divided in three phases: The design of the first two phases was developed by PROES The first phase (17.7 km) was opened in May 2003 with three new overpasses: one over the A3 High way, another over the A5 Highway and the third over the Avenida de Arcentales. The second-phase works (15.3 km) were completed in April 2006 and included two overpasses: one over the A2 Highway and the other over the Avenida de los Andes.
The structural type that best complied with requirements was the spatial tubular steel lattice. Based on this structural type, very light, almost "transparent" structures were designed which are neverthe less designed to resist high loads, since in many parts of the Ring, the track itself is the natural road for park maintenance vehicles.
Another significant determinant of the project was the width of the overpasses. The cycling lanes hat make up the Ring are 6 metres wide (4 metres for cyclists and 2 metres for pedestrians). Howeve he overpasses, as crossing points, are just 5 metres wide (3.5 metres for cyclists and 1.5 metres for pedestrians). This still allows easy access to firefighting vehicles

Owner: Department of Works and Infrastructures, Madrid City Council
Designer: PROES Consultores S.A.
Contractor: Elsan Pacsa S.A.
Technical Assistance: Euroconsult

Spain

Eowstring Arch Overpasse
 on the Madrid Cycling Ring

Madrid

12007

Unique conceptual design and
aesthetic appeal
Long spans with stringent
Quick analysis and erection
Minimum traffic interference

The design of three bowstring arch overpasses on the Madrid Cycling Ring, with pans of 52 metres (M-500), 60 metres (A-6) nd 82 metres ($\mathrm{N}-\mathrm{II}$), paid special attention to The most noticeable aspect of
is the aesthetic and structural effectiveness, obtained by using oblique hangers in either a Nielsen arrangement or a network configuration (80-metre span). This allows for homogeneous hanger proportioning ($\varnothing 42 \mathrm{~mm}$ bars,
S460N steel) and minimal bending moments in the arch and tie beams. Both in-plane and out-of-plane buckling response is also improved. The arch and tie beams virtually take purely axial loads, thereby achieving great slenderness (span/thickness $=131$) and mateubes no thicker than 25 mm). Tie beams are 8.5 m apart and the arches converge at the rown, with a span-to-rise ratio of about 7 to 1 . A Nielsen hanger arrangement was ruled meant unacceptable compression forces under non-symmetric loading.
The deck is made up of a concrete slab 5 or 6 metres wide connected to transverse bellyhaped beams pinned to the tie beams

- Prefabrication kept land occupation and of the structure made it possible to hoist the complete steel structure together with the deck's precast slabs and rebar by means of ne crane only in less than 5 hours at night, barely disrupting traffic.

Client: Madrid City Council tructural design: IDEAM S.A. Francisco Millanes, Luis Matute, Jorge Nebreda Contractor: Acciona

Spain

La Cava Footbridge

- Logroño
- 2006
\square A variable-width footbridge
- An iconic gateway to the city of

Logroño

The La Cava footbridge is a perfect example of the lattice bridge structural type, with its curved we and variable width. It is the result of a natural evolution of the Arenas-Moneo team's design for the Expo 2008 Bridge Pavilion Competition.
With a span of 61 metres and fion. ing rod span of 61 metres and a fixed-hinged main element, it allows pedestrians to cross the city' ing road. The lattice, with transverse "Gothic" arches linking the top and bottom longitudinal chords, has a slightly variable web, growing wider as it approaches the anchored side, where an initial trianguthe foundations. The other end acts as threshold to a more open space. The combination of the glazed skin and the curved lattice not only along the bridge crossing, but also protects from adverse weather and traffic noise.
The access elements are designed with different solutions. On the north side access is through two The access elements are designed with different solutions. On the north side access is through two
meandering ramps with inclines of between 6% and 9%, consisting of a concrete slab over asymmetrical steel piers associated to lighting elements. The curved outline creates a fluent and organic acces hich respects the existing trees in the park.
The south side is resolved by a different approach. A new artificial hill with ramps and stairs wa reated as a noise protection barrier for the new buildings. Its elliptical form is sliced and contained

In conclusion, this footbridge creates a new urban space which fits in with its surroundings and fulfil its mission of connecting the two sides of the ring road, becoming in the process an iconic gateway to the city of Logroño.
Client: Logroño Council / Designer: Arenas\&Asociados, Bridge Designers / Contractor: Ferrovial

Spain

Polvorines Footbridge

- Toledo
- 2007
- Tender requirement: no pier in
- Main span 105 metres
suspension bridge
- A modern structure respecting the surroundings

The aim of the project was to provide a connection between the two banks of the river Tajo in Toledo Spain), close to the former Firearms Factory. Toledo is a world heritage city. For this reason it was a principal requirement to design a modern structure respecting the traditional architecture around it. On he other hand, in order to respect the environment, it was stipulated that the bridge should span the iver without an intermediate pier.
The final design was for a suspension bridge with a main span of 105 metres. The bridge was de igned by Estudio AIA, and built by FCC Construcción. The owner of the bridge is Toledo City Council. The deck is 6 metres wide and the main cables are 9 metres apart. The four steel pylons are 22 connected to transverse beams. The main cables are of the locked-coil type and have a diameter of 84 metres; the hangers are seven-wire strands with a diameter of 16 millimetres.
The deck is a composite box section with a depth of 950 millimetres, consisting of a steel box section with 800 -millimetre webs, a two-metre bottom plate and 300 -millimetre top flanges. This is covered by brown concrete slab 6 metres wide and 150 millimetres thick. The connection between the concrete and steel box is by means of studs.
The four steel pylons were built from rigid box section, two on each riverbank. The box section has an additional transverse stiffener, since there is no bracing between the towers.
Each pylon is tied back to the anchor block by two steel pipes to minimise axial deformation. The anchor for the tie-back rods consists of prestressed steel bars 20 metres long which are anchored into the ground.
The steel type selected for the structure is $\mathrm{S}-355$, while the concrete grade for the composite dec ab is C-35/40.
The bridge foundations consist of concrete piles with a diameter of 850 millimetres: 14 on the north All construction south bank. The piles are more than 15 metres long.
Ashed, the steel rane. Next, the structure was installed. First the four pylons were lifted in as single elements using a nected to the main cable before it was installed, to avoid any work having to be carried orers were conThe deck he main cable before it was installed, to avoid any work having to be carried out in the river the main cable. After that, the concrete slab was constructed in situ over the steel section.
Finally, a load test was carried out to check structural behaviour. The maximum vertical deflection

[^1]

Spain

Expo 2008 Tubular Footbridge

- Madrid

- 2008

Composite steel-and-concrete footbridge
Total length 103 metres

The structure consists of a composite steel-and-concrete ubular footbridge, designed and built for Expo 2008 in Zaragoza
The footbridge is 103 metres long and 8.5 metres wide with two lateral cantilevers of 10.64 and 9.06 metres and five pans of $15.42,18.51,18.51,18.51$ and 12.34 metres. On he west side the footbridge connects to the Water Tower Footbridge, while on the east side it ends at the Support Building In both cases, the junction is skewed, the footbridge's sla adapting its shape to the geometry of the two structures.
The cross-section consists of a steel-and-concrete comosite three-dimensional lattice of constant depth with holforced concrete slab is placed.
The lattice has the shape of an inverted triangle, with wo upper chords 177.8 mm in diameter and 6 mm thick, and a single lower chord 273.0 mm in diameter and $8-16$ mm thick. The upper chords are 3.0 metres apart, while he vertical distance between the upper and lower chord 1.25 metres

The chords are linked by two inclined planes of trusses, $6-10 \mathrm{~mm}$ thick, wteel tubes 139.7 mm in diameter and ends of 1.543 metres.
With this arrangement, four diagonal elements mee at the lower chord every 3.086 metres. All elements are nited directly, by means of welding, without any overlap etween diagonals.
t the upper chords, and every 3.086 metres, two diagonals meet at each chord, and at the same point the latter is rialised by means of a plate located on each inclined mate which, cutting the upper chords along one diameter, meets a horizontal plate on which the studs are located.
The concrete upper slab is cast onto precast slabs which an the deck's whole width.
The piers are made of reinforced concrete with a Y hape, consisting of a full-section rectangular shatt of var he upper chords.

Owner: Expo Zaragoza 2008 / Design: IDEAM S.A rancisco Millanes, Antonio Carnerero, Juan José Laso / Contractor: Obenasa-Obearagón Joint Venture

Spain

Las Delicias Footbridge

- Zaragoza

■2008

- Four main suspension cables

■ Also acts as an observation point
Wooden deck

This footbridge, over 240 metres long and with a 90 -metre curved suspended main span, is located in Zaragoza and crosses the major road junction in front of Zaragoza-Delicias railway station and provides access to the La Almozara district.
The composite access ramps, with asymmetrical piers of graceful structural form, resolve the probem of the connection to the station without competing with the architecture of the station building itself. The main span requires a much more "visible" structure, not only because of its length but also The central span is structured around an eccentric inclined sta Almozara.
les supporting the footbridge deck are suspended At inclined steel mast from which the four main At 20 metres high, the mast does not exceed the ission of vertical arches. The mast backstays are needed for stability, while its strut allows the transdue to the vertical loads to the deep foundations. The main cables describe non-planar spatial curve due to the curved plan of the footbridge, so an iterative form-finding analysis was necessary to define the hangers, which were cut to measure. The interplay between the mast, the cables and the slende curved deck results in a light, transparent structure that is integrated into its surroundings in terms of nological and design solutions.
The finished footbridge includes a wooden deck which, in combination with the curved plan, the point from which pedestrians can contemplate and interact with the surrounding landscape.
Client: Zaragoza Alta Velocidad / Designer: Arenas\&Asociados, Bridge Designers / Contractor: Ferrovial

Spain

Cable-stayed footbridge over
the river $=$
■2008
■ Curved steel closed box beam

- Length 235 metres
- Inclined pylon, height 70 metres

This footbridge was built for the 2008 International Expo in Zaragoza, the theme of which was Wate and Sustainable Development. The bridge crosses the river Ebro upstream of the Almozara Bridge. It consists of a steel closed box beam which is curved in plan view and which is supported by cable stays along its external edge. The cable stays are of the locked coil type and are anchored to an inclined stee pylon which is 90 metres long and 70 metres high.
The footbridge is bridge except near the left river bank abutment, where this distance is reduced to 2.90 metres. The total number of cables is 38 .
The inclined pylon is located on the river bank at a distance of 94 metres with respect to the right river bank abutment and at a distance of 141 metres from the left river bank abutment. Its shape is a cone trunk with a diameter of 2.20 metres at the base and 0.30 metres at the top. All the cables (38 for the footbridge and 10 backstays) are anchored to the upper part of the pylon by means of steel sockets. The pylon foundation consists of 8 piles with a diameter of 1.5 metres. The abutment foundations conist of micropiles.

Owner: Ebro River Basin Authority / Design: Carlos Fernández Casado S.L. (Spain) / Contractor: FCC (Spain) / Steelwork: Horta Coslada (Spain) / Cables: Redaelli (Italy)

Spain

The project consists of two different but perfectly integrated parts: two access spans, which constitute a link between the two pedestrian paths running along the banks of the river, and a central span ver the channel of the river Segre
The access spans are 0.40 -metre-thick reinforced concrete slabs resting on slender concrete piers. The access span on the right bank is wider, forming a square and serving to support a stairway givin access to the lower level of the river bank.
nge central structure is a steel bowstring arch with a span of 62.80 metres. The deck is a steel trialong its axis by a set of hangers at intervals of 6 and a depth of 0.53 metres. The deck is supported anchors at the connections with deck and arch.
In the abutment area, the deck section varies slightly, becoming almost rectangular.
The arch follows a parabolic line and has a quadrilateral (almost triangular) cross-section with a san-to-rise ratio of 8.1:1. The cross-section has a constant area but its dimensions vary from the base the crown. The cross-section is wider at the crown than at the base in order to stabilise the arch erence with the footway.
This geometry, based on the resistance needs of the structure, gives the footbridge a visual dynamism. The combination of concrete access spans with a bowstring arch has resulted in an interesting footbridge and an economically affordable piece of infrastructure for a small town such as Balaguer.
Owner: Municipality of Balaguer / Design: J. Romo, J. Sanchez, J. De Cabo FHECOR Ingenieros Cwer: Municipality of Balaguer / Design: J.

Footbriage over the river
 Fuengirola

Fuengirola, Málaga

2008

Length 90 metres
Asymmetric cable-stayed
structure
Prefabricated pier and deck

In order to provide continuity to the maritime promenade in Fuengirola, the Coasts Authority (a body within Spain's environment ministry) decided to build a footbridge on the estuary of the river Fuengirola, with supports located in such a way that it would not interfere with the river's discharge. To omply with this restriction and in order to maintain the level of the existing stretches of promenade he footbridge has a length of almost a built-up are co
bank of the river. For this reason it was decided to build an asymmetric cable-stayed structure, with the abutment located opposite the buildings. The structure was thus designed with a main span of 68.20 metres and a side span of 14.8 metres.
Due to the uncompensated spans, whose lengths are in a ratio of approximately $5: 1$, the balance of he vertical loads from the main cable-stayed span is obtained by means of a counterweight connected othe compensation span in such a way that horizontal loads transmitted by the retaing cable The cable-stayed system was achieved using f between 40 and 55 mm . The of 0.60 metres, which deck is typically 5.10 metres wide and comprises two side beams of a thick
The deck metres, which are connected to the deck via a slab with a thickness of 0.20 metres. The deck is embedded into the counterweight and supported by a pier and the abutment, where the
only expansion joint of the structures is located. The side span, which contributes to the effect of the only expansion joint of the structures is located. The side span, which contributes to the effect of the with the same thickness as the rest of the deck (0.60 metres), in order to maintain the continuity of the bridge's line.
The A-shaped pier is situated 31 metres above the foundation, and has a longitudinal thickness of metre, with shafts 0.90 metres wide up to the point where they join at the cap. Beneath the level of the leck is a reinforced concrete lintel which connects the two shafts and provides support for the deck. Both the pier and the deck are prefabricated.

[^2]
Spain

The purpose of the footbridge is to connect the two banks of the Manzanares river. Although the river is not very wide, the footbridge has to cross the two carriageways of the M30 peripheral motorway, which run parallel to the river, one on each side (Fig. 1) and the landing space is reduced since two streets un parallel to the river on both sides. The conceptual design consists of two curved U-shaped bridges connected in the centre and supported by a single pylon located on one of the river banks by means of cable stays. he shape of the bridge is the result of ale the mentioned constraints as well as of the need scale model. The main span measures 120 metres and the height of the pylon is 42 metres. The deck is a 2.44 -metre-wide steel trapezoidal closed box which is complemented by transverse beams and a tube to increase the structural width and, consequently, the horizontal moment of inertia The cables are of the locked coil type with a maximum diameter of 40 mm which were prefabricated t heir exact length before installation. The steel pylon has a circular cross-section with a diameter ranging from 1.5 metres at the base to 0.3 metres at the top
The deck was built in segments in a steel workshop. It was erected on site and welded to provisional upports limiting the spans to approximately 25 metres. These operations had to be performed durin

Owner: Municipality of Madrid / Design: Carlos Fernández Casado S.L. (Spain)
Owner: Municipality of Madrid / Design: Carlos Fernández Casado S.L. (Spain)
Contractor: FCC (Spain) / Steelwork: Megusa (Spain) / Cables: Tensoteci (Italy)

Spain

La Paloma Footbridge

Madrid

- 2010
- Designed to meet stringent standards and requirements - Four-span system, total length 190 metres

The shape adopted for the La Paloma footbridge, one of a series of footbridges built to improve the lateral permeability of an urban motorway in Madrid, was the result of site constraints and the functional equirements defined in the specifications for the design contest organised by the municipal government. A continuous four-span system with a total length of $190(43+52+52+43)$ metres was devised for the bridge deck. In plan view, the two outer spans are straight for most of their length, while the two central for pedestrians and cyclists is over 4.5 metres wide.
The top and bottom flanges and inclined lattice on the open C-shaped bridge girder consist of three structural steel trusses. The top and bottom flanges are 4 and 5.5 metres wide respectively, while the cross-sectional height is 3.9 metres. Both the longitudinal chords and the diagonals are steel member with welded box sections whose dimensions vary in the bottom flange and lattice diagonals. This, to gether with the incline of the lattice, determined the use of trapezoidal steel boxes for the top and bottom hords of this truss. The centres of the diagonals are at 8.7 -metre intervals along the chords of all three russes. The composite slab (depth: 0.23 metres) is supported by the bottom truss chords and diagonals The piers are Y-shaped, with the upper branches formed by two adjacent slanted truss diagonals ncrease from top to bottom and are larger than the standard truss diagonal dimensions. Consequently, they project beyond the outer surface of the slanted truss. The pier shaft, a steel box with variable cross-sectional dimensions inclined at the same angle as the lattice of the bridge girder, abuts with it branches on the bottom chord of the truss.
Owner: City of Madrid / Structural engineers: P. Tanner J.L. Bellod and D. Sanz; Cesma Ingenieros, Madrid, Spain / Main contractor: Intersa, Murcia, Spain / Steel structure subcontractors: Iturmo A., Asturias, Spain; Montajes Camargo S.L., Cantabria, Spain / Specialist subcontractor: ALE Heavylift, Spain

Spain

The twin Matadero and Invernadero shell footbridges are two fundamental elements in the new sysTh footbridges designed to link the two banks of the river Manzanares in Madrid.
The structures consist of a composite deck with a span of 43.50 metres hung from a reinforced con rete shell by means of two series of $\emptyset 8.1 \mathrm{~mm}$ cables at 0.6 -metre intervals on both sides of the deck. The concrete shell has a total length of 49.10 metres and a camber of 7.7 metres
of the concrete shells, a different one for each ridge. These mosaics, created by Daniel Canogar, are designed to reflect the day-to-day activities of a
The design of the shell had to meet several goals: structural efficiency, the construction process, appreciation of the artwork placed inside the shell, and aesthetic criteria.
Temporary shoring was needed in the river during construction of the composite deck. A temporary ock peninsula was therefore placed on the riverbed to support the shoring.
The concrete shell was built in situ using double-sided wooden shuttering resting on a scaffolding unit placed on the deck, which in turn rested on shoring on the temporary rock bed.
The uniqueness of the shape of the shell meant that the costruction and the asembly of the form work, as well as arrangement of the reinforcement and the casting of the concrete, were approached in an artisanal manner. It is a project that brought together many great minds - something that in the past might have been artist to make it come true.

Owner: City of Madrid
Design: Burgos\&Garrido Arquitectos: Francisco Burgos y Ginés Garrido (team director) + Porras \& La Casta Arquitectos: Fernando Porras y Arantxa La Casta + Rubio\&Alvarez-Sala Arquitectos: CarLa Casta Arquitectos: Fernando Porras y Arantra La Casta + Rubio\&Alvarez-Sala Arquitectos: Ca
los Rubio y Enrique Alvarez Sala + West 8 Landscape Architects: Adriaan Geuze y Edzo Bindels Structural engineering: Fhecor Ingenieros Consultores:
Hugo Corres, Jose Romo, Julio Sánchez, Cristina Sanz
Contractor: ACCIONA

Spain

The high-speed railway line connecting Barcelona and the French border crosses the municipality of Vilafant six metres below ground level. It was decided to build two footbridges to cross the sunken railway lines. The structure, with a single span of 46 metres, is monolithically connected to the abutments. The use of unusual geometric shapes fabricated using stainless steel and GFRP and combined in an innovative fashion gives rise to an austere and elegant solution. Both materials are structural, so he structure becomes an example of hybrid footbridge
The two bridges have a main span of 45.2 metres and a deck width of 4.0 metres. The structures are built-in on both abutments. The cross-section consists of two supported Vierendeel trusses combined with double sheets of GFRP as structural webs. The height of the trusses varies from 3.4 metres at the ends to 1.2 metres at mid-span.
The design concept is based on three basic ideas: the use of lightweight materials, the use of main-tenance-free materials such as stainless steel and GFRP, and a minimalist approach (sober and elegan frms and clean lines, creating a bridge with a clear identity that nevertheless does not dominate th landscape).
wner: ADIF
Designer: Juan A. Sobrino
Contractor: SACYR

Vilafant hybrid footbridges

- Figueres
- 2011
- Made from stainless steel and

GFRP
■ Main span 45.2 metres
Maintenance-free structure

Switzerland

The Chapel Eridge

- Lucerne
-1333
World's oldest covered wooden truss bridge
- Features painted triangular
panels dating from the
seventeenth century
- Current total length 170 metres

Text by: Gorazd Huma
The covered wooden Chapel Bridge over the river Reuss is one of the most recognisable symbol of the city of Lucerne and stands at the point where the waters of Lake Lucerne flow into the Reuss. Lucerne boasted three covered wooden bridges in the Middle Ages, of which only two survive today.
Built in 1333, the bridge (at that time 202.90 metres long) connected the old part of the city in dagonal line with the new district on the opposite bank of the Reuss.
k is covered by a wooden roof run ning the entire length of the bridge. The roof thus protected the supporting truss structure of the bridge and the (relatively small) individual spans.
The Chapel Bridge is the oldest surviving wooden truss bridge in the world
The bridge is best known for the numerous religious paintings situated on triangular wooden panels n its interior. A devastating fire in 1993 destroyed almost two-thirds of the bridge, and with it the majority of the famous seventeenth-century paintings that adorned it. Of the 147 paintings on the bridge the time of the fire, only around a third survived. Most of these have since been restored. In 1994 shortly after the fire, the bridge was renovated and new concrete piles were driven into the riverbed to
support the renovated section.
The bridge crosses the Reuss next to the 33-metre-high octagol Water Tower (Wasserturm), which stands in the river and is believed to have been built in around 1300 , just a few years before the bridge was built. At the time of their construction, both the Water Tower and the bridge formed part of the defences of the city of Lucerne.

Switzerland

The Chaff Eridge
 Spreuert
 - 1408
 -Covered wooden bridge with arched supports - Famous for its interior paintings - One of the two oldest wooden Text by: Garazd Humar

This covered wooden bridge was built in 1408, 75 years after its larger and more famous neighbour the Chapel Bridge. Like its neighbour, this bridge does not cross the Reuss in a straight line but instead ollows a dog-leg route. It is the second-largest wooden bridge in Lucerne.
At the time of its construction it connected Mill Square (Mühlenplatz) to the bakers' quarter (Pfis ergasse). Like the Chapel Bridge, it served for a time as part of the city's fortifications. The original supporting structure of the right-hand section of the bridge is interesting in that it consists of two paral in the interior of the bridge and are only partly visible from the outside. Like the neighbouring Chapel Bridge, this bridge is decorated with fascinating images from Swiss history that remind us of the period in the Middle Ages when the Black Death swept Europe. Images of the Totentanz (Dance of Death) by he baroque painter Kaspar Meglinger appear on a series of panels in the roof section. The theme of he paintings is the age-old story of the fleetingness of human life, in which Death chooses his victims gardless of the wealth or prestige of the individual
The bridge was known as the Chaff Bridge because it was the only point from which millers were ermitted to throw wheat chaff into the river. This was because in the Middle Ages it was the furthes downstream of all Lucerne's bridges.

Three very similar yet different footbridges were built as pedestrian overpasses over the D-100 national road in the city of Izmit. All of them are cable-stayed footbridges and each has a single pylon. The decks are made of steel girders covered by concrete slabs. The stays were supplied by the French company Freyssinet (Freyssinet Ht1000, with outer HDPE pipe). The heights of the 3 pylons range from 38 metres (UG 3) to 43 metres (UG 2). The width of the deck of all three footbridges is 3.9 metres. During the night the footbridges are illuminated, with lights producing special and constantly chang-
ing effects in different colours. One of the three footbridges (UG 2) is also known as the Mimar Sinan Footbridge after the famous Turkish architect and bridge builder Mimar Sinan (1490-1588), who built several famous mosques and bridges during the Ottoman period.

Owner: Kocaeli Metropolitan Municipality / Design: Yüksel Proje / Contractor: Ilke Construction Company / Cable stays supplied and assembled by: Freyssinet, Freysaş Turkey

Contributions of Japan Society of Civil Engineers

The contributions of the Japan Society of Civil Engineers (JSCE) to this book are the fruit of cooperation between the European Council of Civil Engineers (ECCE) and the JSCE. A cooperation agreement between the two organisations was signed by ECCE President Fernando Branco, ECCE President Elect Wlodzimierz Szymczak and JSCE President Takehito Ono in Lisbon, Portugal on 30 May 2013

Kintai Eridge

- Iwakuni, Yamaguchi Prefecture Spans the river Nishiki
- 1673

■ Length 193.3 metres, main spans 35.1 metres, width 5 metres

- 15th reconstruction completed in 2004

Text by M. Matsui

The Kintai Bridge is a unique bridge consisting of five wooden arches spanning the river Nishiki. The bridge was built in 1673 to link the town where Kikkawa Hiroie, the feudal lord, and upper-level samurai lived, and the town where mid-level and low-level samurai and merchants lived. The river Nishiki served as an outer moat for the lord's castle. Later, in the Edo period (from the early seventeenth bridge was built to be sturdy enough to withstand floods and provide a crossing between the two towns. To date the existing bridge has been repaired and reconstructed 15 times. Rebuilding the bridge ha ways been done locally. For this reason, the necessary skills and techniques have been passed down rom generation to generation.

Original designer: Kikkawa Hiroie, first lord of the Iwakuni Domain (17th century)

Monkey Eridge
■ Saruhashi-cho, Otsuki, Yama nashi Prefecture. Spans the river Karturagawa

- 17th century

■ Length 31 metres, men 31 metres, width 3.3 metres - Oldest bridge still in use in Japan

The original Monkey Bridge is believed to have been built some time in the seventeenth century, although the exact date is not known,
The present bridge, incorporating a timber-covered steel frame, was completed in 1984 as a restora ion of the original structure
The bridge spans a 30 -metre valley. Because the valley has steep sides, the bridge is supported by our layers of poles protruding from either bank, taking the place of piers. Many bridges were built using this method. The Monkey Bridge is the oldest bridge in Japan that is still in use today.

Owner: Yamanashi Prefecture

Ipponbashi
Shirakawa, Higashiyama-ku,
Kyoto
18th century, rebuilt in 1907
Length 11.7 metres, width
0.6 metres

Stone beam bridge, 4 spans

Text by M. Matsui

This is a simple yet elegant bridge. It fits well into the historic setting of Kyoto and is used by residents daily. The bridge is also used as a symbolic bridge for shrine rituals and festivals. It is the first bridge crossed by practitioners of the sennichi kaihōgyō (Thousand-Day Mountain Walk) on Mount Hiei when they enter the town.

Owner: City of Kyoto

」apan

Kozuya Bridge

- Kyoto Prefecture. The bridge
spans the river Kizu
■ 1953
-Wooden beam bridge
- Length 356 metres, width
3.3 metres
- Needs to berepained every
because of floods
Text by M. Matsui

The bridge is designed to allow its deck planks to float away with the current when the river floods, so as to reduce the damage that would otherwise be caused by the force of the water. The planks are hen retrieved by hauling on the cables to which they are attached and reassembled into place once the flood has subsided. The bridge has experienced many floods since it was built and is rebuilt every time is hit by a flood. In recent times, as a result of frequent heavy and torrential rains, which cause th river's level to rise, the bridge has had to be repaired almost every year.

Owner: Kyoto Prefecture

Japan

Inachus Eridge
 Beppu, Oita Prefecture
 - 1994
 Suspended arch footbridge
 Total length 35.7 metres, single span
 Width 2.ロ-2.9 metres
 1997 JSCE Tanaka Award

Text by F. Masubuchi

- Tenticular shape - The form corresponds to the flow of forces

Owner: Civil Engineering Dept., Beppu
Designers: Mamoru Kawaguchi \& Katsumi Nagase (Kawaguchi \& Engineers)
Structural designer: Masayuki Ihara (Kawaguchi \& Engineers)

Kujira [Whale] Bridge

- Inagi, Tokyo
- July 1997

Prestressed concrete rigid
frame bridge
Length 107 metres, single span
-Width: $8.9-16.5$ metres
1997 USCE Tanaka Award
Text by F. Masubuchi

The bottom surface of the bridge features a double curve
The bridge looks like the belly of a whale a double curve
Has become a local landmark
Owner: Urban Redevelopment Authority tructural designer: Japan Transportation Consultants Inc.

TFP-Model

Tottori Flower Corridor
Tottori Flower Park
Aimi, Tottori Prefecture

- 1999
- All-weather observation
walkways
Design based on geometric
rationality in nature
Text by K. Takenouch
Credit line (each photo): qu.vits@individually
- Designed to provide an opportunity for people to enjoy a variety of garden plants throughout the year (even in winter), Tot tori Flower Park, surrounded by hills, is a unique and striking complex entirely composed of geometric forms, with all-weathe cess.
The main concept behind the project is "geo-natural." This is the idea that any de sign must be based on geometric rationality in nature, explains chief design supervi sor Hidetsugu Horikoshi of the Architect 5 partnership.
The observation walkways consist of two types of structure. The main part, the "Flower Corridor", has an approximately 1 km circumference and is constructed using an innovative eccentric truss system with seamless joints and supported on slende columns. Attached to it at right angles are straight walkways comprising a half-glazed shell. These meet at the centre of the circle under a colossal glass dome.
-

esigners: Hidetsugu Horikoshi / Architect tructural Designers: Ryozo Umezawa / Umezawa Structural Engineer
Constructors: Circular observation Straight walkways: Zenitaka Co. + Takeda Co. + Matsumoto Co. JV

bird's-eye view of Tottori Flower Park

」apan

Shibuya 21 Eridge

- Tokyo

- 2001

■ Superstructure - single-span
Vierendeel bridg
■ Length 49.5 metres, simple
beam span 47.5 metres, total
width 4.5 metres, deck width 3.2 metres

Text by K. Takenouchi
Photos: © Hidetsugu Horikoshi

This urban footbridge over two roads running parallel to each other was required clearance for traffic. The optimum structure proved to be a unique Vierendeel bridge with slightly diagonal members.

- The design concept for this bridge project was "parallel lines fly across the air ex plains Hidetsugu ect 5 partnership
Both upper and lower chords are made of H -stee,, with the diagonal members inserted without the use of gusset plates, thu creating a unique and innovative footbridg sion of lightness. sion of lightness.
Owner: Ministry of Land, Infrastructure and Transport, Japan
Designers: Hidetsugu Horikoshi
Architect 5 + Tokyu Construction Co. Ltd. tructural Designer: Ryozo Umezawa / Umezawa Structural Engineers Constructor: Tokyu Construction Co. Ltd.

This footbridge links the fish market facing the Kanmon Strait, a popular tourist attraction, with ar park. Based on the truss bridge concent, the structure consists of connected elements forming cuboctahedron combined with triangular units. It is a very unique and innovative form of footbridge.

Owner: City of Shimonoseki / Designers: Masao Saito, Laboratory M. Saito and Kotofumi Kato, Arch, KOT Architect \& Associates / Structural designer: Masao Saito, Laboratory M. Saito and Kotofumi Kato, Arch, KOT Architect \& Associates

Abstract

Japan

Ganmon Bridge
Togi, Hakui District, Ishikaw
Prefecture

- 2001

Prestressed concrete curved chord truss bridge

- Length 39.0 metres, deck width 1.5 metres

■2001 JSCE Tanaka Prize
Text by F. Masubuchi

- The world's first prestressed concrete curved-chord truss bridge

Self-anchored bridge stiffened by stressed ribbons that make up the lower chord members.
Owner: Environment Division, Ishikawa Prefecture / Structural designer: Nihonkai Consultant Co., Sumitomo Mitsui Construction Co. Ltd / Constructor: Sumitomo Mitsui Construction Co. Ltd

Kikiki Pedestrian Suspension
Bridge
[Kikiki no Tsuribashi]

- Ichinohe, Iwate Prefecture
-2002
-Wooden cable-stayed two-span
bridge
- Length 86.5 metres, width 1.8

Text by N. Kuroshima
The Kikiki pedestrian suspension bridge is a horizontally curved suspension bridge with pylons inclined at an angle of 45 degrees supporting a roofed wooden truss structure. The bridge has high torsional rigidity thanks to th curved deck and inclined pylons. , gives users the impression of being transported back in time.

Owner: Town of Ichinohe, Ninohe District Iwate Prefecture (as of 2002) / Designers: Mitsuru Senda + Environment Design Institute / Structural designer: Yoshiharu Kanebako, Kanebako Structural Egnineers

The Kawasaki Muza Deck was built as part of the JR Kawasaki Station West Redevelopment Project This deck is a pedestrian walkway facilitating access between Kawasaki Station and the new Muza Kawasaki complex.
The project took into account the need to preserve green spaces in the area, so the curving walkway is designed in such a way as to allow people to enjoy the trees planted around the station.
The uniquely and elegantly designed walkway cantilevers out from the buildings on either side and provides a roof over the bus stops and pavements below.

Owner: Kawasaki City / Designers: Urban Development Planning, M\&M Design Office, Nippon Engineering Consultants Co. Ltd. / Structural designer: Nippon Engineering Consultants Co. Ltd. / Constructor: Taisei Corp., Iwakura Construction Co. Ltd., and Steel Pipe Construction J

Ohizumi Station
Pedestrian Walkway

- Ohizumi Station, South Exit,

Ohizumi Stati

- 2003
- Steel deck box girde
[rigid frame] bridge
-Deck 1,500 metres 2, spans
10-36 metres, width 6.0 metres
Text by N. Kuroshima

This walkway was constructed as part of the Ohizumi-Gakuen North District Development Project. It connects the station concourse, surrounding buildings, bus stops and taxi stands in a gently sloping arc. The curved shaped allows light to reach the ground, while trees provide shade over the benches along the walkway, helping to make it more user-friendly.

Owner: Nerima Ward, Tokyo
Designer: Hideaki Tomooka, Nippon Engineering Consultants Co. Ltd.
Structural Designer: Nippon Engineering Consultants Co. Ltd.
Constructor: Konoike Corp, Nittoc Construction and Kawada Construction Co. Ltd. JV

Seishun Bridge
Tsumagoi, Agatzuma District
Gunma Prefecture
12006
Single-span prestressed
cospete briage with double
Length 60.1 metres, main span
57.5 metres, width 2.0 metres Text hy M Iso and M. Matsui Photos: ©Sumitomo Mitsui Construction

A double suspension structure with two cables was adopted. The primary cable was used to support the deck load, while the secondary cable served to adjust the sag of the deck during construction. When the bridge was completed, both cables were transferred to the deck to convert the structure into self-anchoring one. The U-shaped deck increases bending stiffness and reduces pedestrian-induced vibrations.
wner: Tsumagoi Village
Designer: Sumitomo Mitsui Construction Co. Ltd.
Constructor: Sumitomo Mitsui Construction Co. Ltd.

Kokonoe "Dream"
 Suspension Bridg

■ Tano, Kokonoe, Kusu District,
Tano, Kokonoe,

- October 2006
\square Single span unstiffened
suspension bridge
Main span 390 metres, width
1.5 metres
-The longest pedestrian
suspension bridge in Japan
Text by M. Iso
Pext by M. M. so
Phot:
© Kawada In Instries Inc.

With a main span of 390 metres, the Kokonoe "Dream" Suspension Bridge is the longest pedestrian suspension bridge in Japan, spanning the Naruko Gorge at a height of 173 metres.

Owner: Town of Kokonoe
基
Constructor: Kawada Industries Inc

The Hama Mirai Walk Footbridge spans the river Katabira and links the Yokohama East Exit and inato-Mirai 21 areas. The footbridge is a tube-shaped deck which allows breezes to flow through it while providing shelter from wind, rain, snow, etc. The bridge is the integration of functional and aes hetic values achieved through modern technology.

Owner: City of Yokohama / Designers: Nippon Engineering Consultants Co. Ltd., M+M Design office, and Nakajima Tatsuoki Lighting Design Laboratory Inc. / Structural designers: Nippon Engineering Consultants Co. Ltd. and Kanebako Structural Engineers / Constructors: Substructure: Kajima Corp. and Iwaki Kogyo Co. Ltd. JV, Superstructure: Yokogawa Bridge Corp., Shelter: Tsuboi Corp., Lighting: Kouyo Electric Equipment Co. Ltd., Deck: Techno-Japan Co. Ltd.

Content

AND, Republic and Northern
ITALY SOME THOUGHTS ABOUT FOOTBRIDGES - The Old Bridge (Ponte Vecchio) The Rialto Bridge (Ponte Rialto)... 22 2 The Bridge of Sighs (Ponte dei Sospir)acchid) ..226 Triple Bridge of Comacchio (Treppontidi Comacchio...28 Footbridge over The Po River (Passerella sul fiume Po).. - Olympic Bridge (Ponte delle Olimpiadi)...33 - Bridge over the Talvera River (Ponte sul fiume Talvera).. Rari Nantes Footbridge...38 Footbridge over the A13 motorway ... 240 Science Bridge (Ponte della Scienza)..
LATVIA - Footbridge over city canal - Footbridge over the canal next to the Latvian National Opera - Footbridge over the river Ogre. - Footbridge over the river Gauja near the Devil's Cave. - Pedestrian overpass over Karlis Ulmanis Avenue (Kār!a Ulmaṇa gatve). - Cesis Castle Park Bridge.
LITHUANIA - Three Maidens Bridge - Trakai Castle Footbridge - Footbridge to Kleboniškis Forest ...270 - Zarasas Bridge ..270
ALTA - Fortifications and Stone Footbridges of Valletta. - Victoria Lines Masonry Bridges - St Elmo Footbridge
MONTENEGRO - Bridge over the Sutorina stream (Most preko riječice Sutorina) \qquad 282 - The Old Bridge at Moštanica (Stari most u Moštanici) Ribnica Bridge [Most na Ribnici] - Rijeka Crnojevića Bridge (also known as Danilo's Bridge)..285 - The Tsar's Bridge (Carev most) .. - The Moscow Bridge (Ruski most)
LAND - FOOTBRIDGES IN POLAND, PAST AND PRESENT - Footbridge over the river Odra. - Stone footbridge over a walled footpath - Cast-iron arch bridge over the river Strzegomka - Opatówek cast-iron footbridge .. - Courtyard footbridge at Lviv Polytechnic. - Cable-stayed footbridge in Tylmanowa... - Footbridge over Trasa Łazienkowska.... - Footbridge over the river Kłodnica. - Cable-stayed footbridge over the river Bystrzyca. - Crooked Stick [Krzywy Kij] footbridge over the A4 motorway295 - Eros Arch footbridge over the A4 motorway... 295 - Malt Island Footbridge over the river Odra ... 296 - Footbridge over the river Dunajec. - Footbridge over the $\mathbf{S} 11$ expressway .. $\mathbf{3 0 0}$

ECCE member organisations
[Situation as per August 2014]

ЗULGARIA [BG]
ъمэ НА СТРОИТЕЛНИТЕ ИНЖ Civil Engineers in Bulgaria
www.uceb.eu
CROATIA [HR]
Hrvatska komora inżenjera gradevinarstva
Croatian Chamber of Civil Engineers
www.hkig.hr
CYPRUS [CY]
Cyprus Council of Civil Engineers
representing three organizations: Cyprus Civil Engineers \& Architects Association, Cyprus Association of Civil
, Chineers, Union of the Chambers of Cyprus Turkish Engineers and Architects / Chamber of Civil Engineers]
CZECH REPUBLIC [CZ]
eský suaz stavebních inženýruu / Ceská komora autorizovaných inženýrủ a technikủ činných ve výstavbẽ (Chamber of Certified Engineers and Technicians
www.cssi-cr.cz / www
Eesti Ehitusinseneride Liit
Estonian Association of Civil Engineers
www.ehitusinsener.ee
FINLAND [FI]
suomen Rakennusinsinö̈rien Liitto
Finnish Association of Civil Engineers
ww.r.ril.fi
=RANCE [FR]
ngenieurs et Scientifiques de France
Engineers and Scientists of Franc
GEORGIA [GE]
Georgian Society of Civil Engineers
www.gsce.ge
GERMANY [DE]
Zentralverband Deutscher Ingenieure
The Institute of German Engineers e.V. - ZDI
www.zdi-ingenieure.de (Associate Member)
GREECE[GR]

.
HUNGARY [HU]
Magyar Mérnöki Kamar
Magyar Mernoki Kamara
The Hungarian Chamber of Engineers
www.mmk.hu

RELAND [IE]
Engineers Ireland
.engineersireland.ie
ITALY [IT]
Consiglio Nazionale Degli Ingegneri
National Council of Enginee
LATVIA [LV]
Latvijas Būvinženieru savīeniba atvian Association of Civil Engineer
ww.buvinzenierusavien
LITHUANIA [LT]
ithuanian Association of Civil Enginga
www.Isis.It
MALTA [MT]
Chamber of Architects and Civil Engineers
ww.ktpmalta.com
MONTENEGRO [ME]
Inzenjerska komora Crne Gore
Engineers Chamber of Montenegro - Civil Engineers Chamber
www.ingkomora.me
POLAND [PL]
Polska Izba Inżynierów Budownictwa
Polish Chamber of Civil Engineers
www.piib.org.pl
PORTUGAL [PT]
Ordem dos Engenh
wrder or fngineers
RUSIA [RU]
оссийское общество инженеров строительства (РОИС)
Russian Society of Civil Engineers
www.rois.ru
ROMANIA [RO]
Romanian Union of Civil Engineers Associations
www.utcb.ro
SERBIA [RS]
Inženjerska komora Srbije
Izzenjerska komora Srbije
www.ingkomora.org.rs
SLOVAK REPUBLIC [SK]
Slovenská komora stavebných inž
Slovak Chamber of Civil Engineers

wn.sksi.sk

LOVENIA [SI]
nženirska zbornica Slovenije
www.izs.si
SPAIN [ES]
olegio de Ingenieros de Caminos, Canales y Puertos
College of Civil Engineering, Channels and Ports
ww.ciccp.es
TURKEY [TR]
Turkish Chamber of Civil Engineer
www.imo.org.tr
UNITED KINGDOM [UK
nstitution of Civil Engineers (ICE)
www.ice.org.uk

$\square \square$
 European Counci
 of
 Civil Engineers

European Council of Civil Engineers

was created in 1985 out of the common concern of the professional bodies for Civil Engineers in Europe that the Civil Engineers working together across Europe could offer much more to assist modern European society with sustainable designs, practical use of research \& development, and economic and well funding structures.

DBJECTIVES

European Union

- Promote the highest technical and ethical standards
- Provide a source of impartial advice;
- Promote co-operation with other pan-European organisations in the Construction Industry;

Contribute towards professional recognition of qualifications and mobility in the framework of existing EU directives.

National Governments and Institutions

- Advice and influence individual governments and professional Institutions;

Formulate standards and achieve a mutual compatibility of different regulations controlling the profession;
Formulate standards for a European Code of Conduct of the Civil Engineering Profession and disciplinary procedures applicable throughout the Union.

Profession, Related Organisations and Industry

- Formulate guidelines to maintain and raise standards of civil engineering education; training and professionals' competence:
- Assist in achieving mutual compatibility of Eurocodes, standards and regulations in the related industry: - Encourage and improve levels of safety and quality in the industry

CURRENT STANDING COMMITTEES
 \section*{\& TASK FORCES}

Education \& Training
Environment \& Sustainability
Development \& Business Environment
Knowledge \& Technology
Task Force Civil Engineering Heritage

ECCE MEMBERSHIP

The current membership is made up of member organizations from
BULGARIA, CROATIA, CYPRUS, CZECH REPUBLIC, ESTONIA, FINLAND, FRANCE, GEORGIA, GERMANY, GREECE, HUNGARY, IRELAND, ITALY, LATVIA, LITHUANIA, MALTA, MONTENEGRO, POLAND, PORTUGAL RUSSIA, ROMANIA, SERBIA, SLOVAK REPUBLIK, SLOVENIA, SPAIN, TURKEY, and UNITED KINGDOM.

MEMBERSHIP IN EUROPEAN AND INTERNATIONAL

 ORGANIZATIONSECCE is a member of World Council of Civil Engineers. (WCCE), European Council for Construction Research Development and Innovation (ECCREDI), European Construction Forum (ECF) and also a member of the Euonean Civil Engineering Education and Training (EUCEFT) Association.
CCE also maintains continuous and close cooperation with European Council of Engineers Chamber [ECEC], European Federation of Engineering Consultancy Associations (EFCA), World Federation of Eninering Oreanisatio (WFEO) and Euro an Federation of National Engineaing Association (FEANI) ECCE has formal agreements with counterparts across the globe - American Society of Civil Engineers [ASCE), Japan Society of Civil Engineers (JSCE) and Korean Society of Civil Engineers (KSCE). ASCE), Japan Society of Civil Engineers (JSCE) and Korean Society of Civil Engineers (KSCE).

www.ecceengineers.eu

FOR MORE INFORMATION CONTACT

CCE Secretariat: Maria Karanasiou, ECCE Secretary Genera

 Thiras 49, 11252 , Athens, GreeceTel./ Fax: +30 2108623992 • E-mail: ecce_sps@otenet.gr
Registered Office: 1 Great George Street •Westminster • London SW1P 3AA • United Kingdom

Some details about the book
the book contains 416 pages
a total of 196 footbridges [179 in Europe and 17 in Japan] are presented in words and pictures
the book contains a total of 613 photographs, including 43 two-page spreads
important events in the history of bridge building are covered in a 34-page section
more than 70 different authors from Europe and Japan have contributed to the book
the book presents a rich and diverse selection of footbridges of various kinds, many of them world record holders
-both historic and modern bridges are included
eney criteria for the selection of individua
bridges were their technical and architectural features and characteristics, while some are simply attractive

[^0]: * Country not being ECCE member
 *The contribution of JSCE-Japan Society of Civil Engineers as guest

[^1]: Owner: Toledo City Council
 Design engineer: Ramón Sánchez de León.
 tructural engineering: Estudio AIA.
 Contractor: FCC Construcción

[^2]: Owner: Coasts Authority, Ministry of the Environment Design: J. Romo, J. Sanchez, F. Prieto FHECOR Ingenieros

