### "Seismic Design and Rehabilitation of Buildings" Conference, Tbilisi, May 31, 2014

**An Overview for Practicing Engineers** 

### SEISMIC REHAB OF RC STRUCTURES

A. T. Tankut
Middle East Technical University
Ankara, Turkey

### **FOREWORD**

- Of my two alternative proposals, namely,
  - A report on recent scientific research or
  - An **overview** for practicing engineers, the latter was preferred. Thus,
- In this talk, existing information will be presented in a classified manner.

Nothing sophisticated, nothing impressive...

### **OUTLINE**

- Introduction
- Rehabilitation Strategy
- Rehabilitation Technologies
- OFR-Occupant Friendly Rehabilitation (if time allows)
- Concluding Remark

### Earthquake is a natural phenomenon

- It is tolerable in countries where people and built environment are prepared for it;
- It leads to a disaster in countries where built environment is not prepared for it and people just wait and do nothing.

### Earthquake Preparedness consists of

- Disaster Management (post-quake) Search
   & rescue, sheltering, food, medical care etc.
   (Tip of the iceberg, easy but ineffective)
- Risk Management (pre-quake) Safe towns, safe structures, well educated public, well trained engineers, effective financing etc. (Body of the iceberg, hard but very effective)

**Risk Mitigation** is a multi-dimensional activity having various aspects such as,

- Earth sciences
- Civil engineering
- Educational
- Psychological
- Financial
- Legislative

- Urban planning
- Environmental
- Social
- Administrative
- Economic
- Political etc.

- A huge seismically unsafe building stock
- A systematic assessment will reveal that
  - A small number seismically safe,
  - A certain portion to be demolished,
  - The majority to be rehabilitated. So,
- Seismic rehabilitation is one of the most critical aspects of risk mitigation.

### Risk mitigation unavoidably requires

- A well definedDamage Mitigation Strategy
- A realistic and well organised Action Plan
- A consistent and insistent implementation for decades
- And plenty of political will (???)

### **REHAB STRATEGY**

### REHAB STRATEGY

Development of an efficient rehabilitation strategy requires careful considerations of

- Common deficiencies observed;
- Performance levels to aim at;
- Rehab technologies available.

### **Common Deficiencies**

### **COMMON DEFICIENCIES**

RC framed building structures with hollow brick masonry infill are common in SEE.

- Low-rise (1~2 floor) are not vulnerable;
- **High-rise** (> 10~12 floor) buildings are carefully designed and constructed;
- Mid-rise (3~8floor) bldgs of inferior material, design & construction quality are a problem.

### **COMMON DEFICIENCIES**

### Mid-rise buildings of inferior quality

- Constitute the majority in small towns;
- Collapse in the pancake mode; thus
- Are responsible from the high number of human losses and severe damage,
- Are generally too good for demolition;
- Are greatly in need of rehabilitation.

### **COMMON DEFICIENCIES**

### **Common deficiencies** of such buildings:

- Insufficient lateral stiffness
- Deficient reinforcement detailing
  - Insufficient confinement & anchorage
  - Inadequate joint reinforcement etc.
- Deficient design practice
  - Horizontal/vertical irregularities
  - Short columns; soft storeys etc.
- Poor concrete; poor workmanship etc.

### **Performance Levels**

### PERFORMANCE LEVELS

### **Generally accepted performance levels:**

- Functional Slight or no damage (in the code earthquake); continued serviceability
- Immediate occupancy Light damage; serviceability after inspection
- Life safety Moderate damage
- Collapse prevention Severe damage, no collapse, no casualties

#### PERFORMANCE LEVELS

#### Most of the current seismic codes

- Were developed for new structures;
- Aim at a performance level above life safety without explicitly mentioning;
- Apply to repair and strengthening besides new construction;
- No flexibility for "performance level" and "remaining service life" considerations.

### PERFORMANCE LEVELS

- Special code provisions are needed for rehabilitation providing flexibility for
  - Performance level and
  - Remaining service life considerations.
- Designer should be given the choice of
  - Life safety or collapse prevention
  - 20 or 40 or >60 yrs service life.

# Rehab Technologies Available

### REHAB TECHNOLOGY

## Member strengthening techniques are available for

- Columns (axial load & bending)
- Beams (bending & shear)
- Beam-column joints (shear)
- Slabs (diaphragm action)

### REHAB TECHNOLOGY

## System behaviour improvement techniques are also available

- Lateral stiffness increasing elements (To relieve members from seismic effects)
- Base isolation, dampers etc.
   (To minimise seis action transfer to structure)

# Rehab Strategy Proposed

### REHAB STRATEGY

- Member strengthening is preferred when
  - Structural weakness is localised or
  - A small number of members are deficient.
- Member strengthening is not feasible when
  - Deficiencies are widespread and
  - Lateral stiffness is insufficient

### REHAB STRATEGY

## Considering common deficiencies above a sensible strategy can be formulated as;

- System behaviour improvement is essential and should be accompanied by
- Strengthening of a limited number of deficient members

## REHAB TECHNOLOGIES CLASSIFIED

# System Improvement Techniques

### **SYSTEM IMPROVEMENT**

### Lateral stiffness increasing elements such as

- Cast-in-place reinf conc infilled frames
- Steel cross bracing
- Post tensioning
- External rigid frame to support the str
- Masonry infills converted to shear walls

# Member Strengthening Techniques

### **COLUMN STRENGTHENING**

### Reinforced concrete jacketing

- Effective for axial load, but complicated and not recommended for bending
- Full jacket is best, partial is acceptable
- Well confinement in jacket is essential
- Bar welding is recommended

### **COLUMN STRENGTHENING**

### **Steel jacketing**

- Only for axial load, never for bending
- Tight connection with base plates and
- Well confinement are essential

### **COLUMN STRENGTHENING**

#### **CFRP** confinement

- Effective as confinement especially in circular columns; to a lesser extent in rectangular ones
- Effective to improve lap splice performance and capacity

### **BEAM STRENGTHENING**

### Additional layers with new steel

- Effective for bending
- Bar development is critical
- Welding is advisable
- Stirrups or Z-bars are essential
- CFRP applications to the same effect are also possible.

### **BEAM STRENGTHENING**

### External clamps as shear reinforcement

- Effective for shear
- Limited prestressing is recommended
- CFRP applications to the same effect are also possible.

### **BEAM STRENGTHENING**

Beams connected to new lateral stiffness elements become "coupling beams" and receive enormous bending and shear.

- Hinging is unavoidable. Make sure,
- It is properly confined to tolerate hinging,
- Shear capacity is higher than bending cap.

### **JOINT STRENGTHENING**

## Joints are critical under seismic action, and they are generally deficient

(Required confinement is not usually provided)

- Effective and practical strengthening techniques are not yet available (Suggestions are ineffective or impractical).
- Another reason to endorse the system behaviour improvement approach

## **SLAB STRENGTHENING**

Major contribution of the slab to the seismic performance is diaphragm action.

# Additional layers with new steel

- Effective for bending & in-plane stress
- Rough connection surface and
- Shear connectors are essential
- Deformation recovery is not recommended

# OCCUPANT FRIENDLY REHABILITATION

# **BASIC QUESTION**

- Cast-in-place RC infilled frame technique is suitable for post-quake repair of the evacuated buildings;
- But it is not suitable for pre-quake
   rehabilitation of the buildings still in use.
- Suitable techniques should be developed.

#### THE CHALLANGE

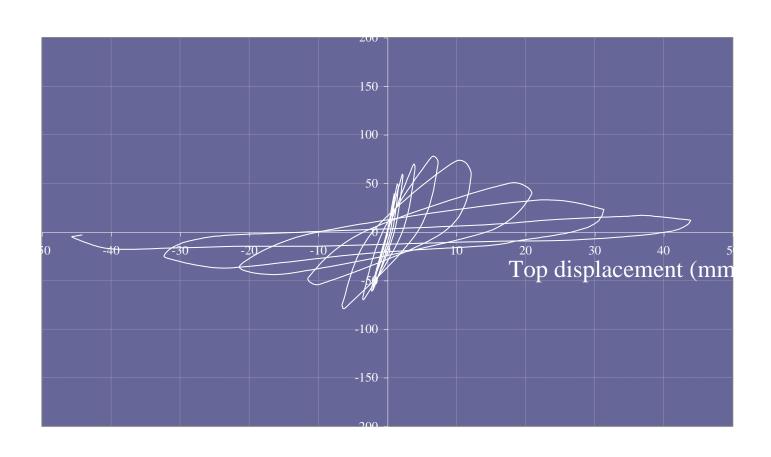
# To develop a rehabilitation method,

- Suitable for the common local building type (Hollow brick infilled RC frame)
- Practical & economical, and above all
- Occupant friendly (no more disturbance than an ordinary painting job)

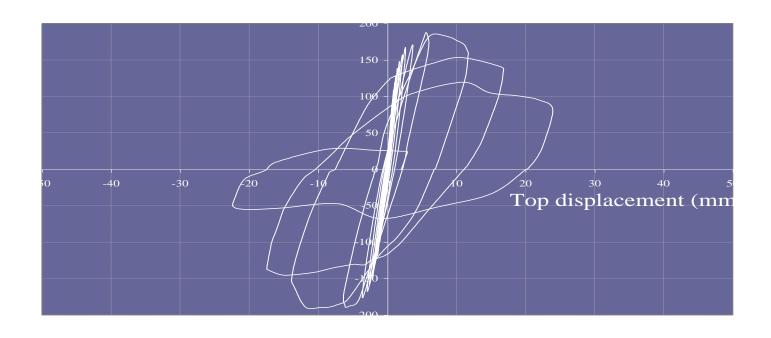
#### **THE ANSWER**

# The answer is OFR (occupant friendly rehab)

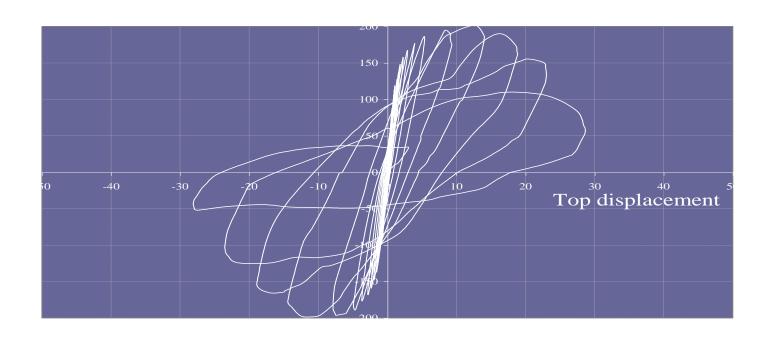
- To reinforce existing masonry infill wall with epoxy bonded PC panels, which are,
  - Light enough to be handled by two men
  - Relatively thin, 40~50 mm (high strength)
  - Connected to infill wall by epoxy, and to frame by epoxy bonded dowels


#### THE IDEA

- Cast-in-place reinforced concrete infill is known to improve the seismic structural performance.
- Why shouldn't PC panel reinforced masonry infill do the same ?


#### **TEST FRAMES**

- 1/3 scale, one-bay, two-storey inferior quality RC frames, (representing the actual practice)
  - Strong beam-weak column
  - Insufficient confinement
  - Low quality concrete (C13~C16)


# **REFERENCE**



# **STRENGTHENED (SQUARE)**

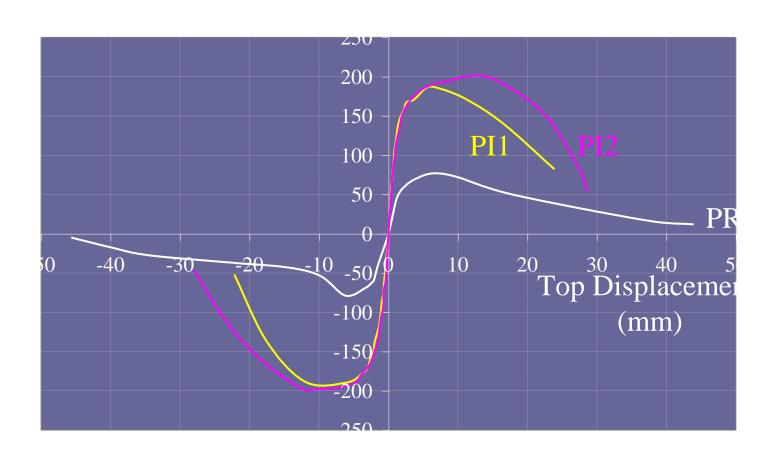


# **STRENGTHENED (STRIP)**



# **REFERENCE**




# **STRENGTHENED (SQUARE)**



# **STRENGTHENED (STRIP)**



# **ENVELOPES**



# PERFORMANCE IMPROVEMENT

Relative to masonry infilled frame

Relative to bare frame

Lateral load capacity

 $\sim$ 2.5 times

~ 15 times

Lateral stiffness

~3 times

~ 20 times

Ductility

~ 2 times

 $\sim 0.2$  times

**Energy dissipation** 

~ 3 times

~ 60 times

## INTERPRETATION

# Significantly improved performance:

- Increased load carrying capacity
- Increased initial & final stiffness
- Delayed strength degradation
- Decelerated stiffness degradation
- Better ductility
- Much higher energy dissipation

#### **CONCLUSION**

# PC panel technique is an effective & practical seis rehab method for existing buildings.

- Leads to a significant improvement in seismic performance
- Is easily applied to buildings in use with minimal disturbance
- Is cost effective
   (Comparable to cast-in-place RC infills)

# **CONCLUDING REMARK**

#### **A REGRET**

# The speaker regrets

- For not being able to present the manuscript of this talk to be included in the proceedings.
- He was unable to finalise the manuscript in the "8 days" he was given by the authorities.

Lazy old man!..

# THANKS for your attention...

# "Seismic Design and Rehabilitation of Buildings" Conference, Tbilisi, May 31, 2014

**An Overview for Practicing Engineers** 

# SEISMIC REHAB OF RC STRUCTURES

A. T. Tankut
Middle East Technical University
Ankara, Turkey